Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie A. Kazane is active.

Publication


Featured researches published by Stephanie A. Kazane.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Synthesis of site-specific antibody-drug conjugates using unnatural amino acids

Jun Y. Axup; Krishna M. Bajjuri; Melissa Ritland; Benjamin M. Hutchins; Chan Hyuk Kim; Stephanie A. Kazane; Rajkumar Halder; Jane S. Forsyth; Antonio F. Santidrian; Karin Stafin; Yingchun Lu; Hon Tran; Aaron J. Seller; Sandra L. Biroc; Jason Pinkstaff; Feng Tian; Subhash C. Sinha; Vaughn V. Smider; Peter G. Schultz

Antibody-drug conjugates (ADCs) allow selective targeting of cytotoxic drugs to cancer cells presenting tumor-associated surface markers, thereby minimizing systemic toxicity. Traditionally, the drug is conjugated nonselectively to cysteine or lysine residues in the antibody. However, these strategies often lead to heterogeneous products, which make optimization of the biological, physical, and pharmacological properties of an ADC challenging. Here we demonstrate the use of genetically encoded unnatural amino acids with orthogonal chemical reactivity to synthesize homogeneous ADCs with precise control of conjugation site and stoichiometry. p-Acetylphenylalanine was site-specifically incorporated into an anti-Her2 antibody Fab fragment and full-length IgG in Escherichia coli and mammalian cells, respectively. The mutant protein was selectively and efficiently conjugated to an auristatin derivative through a stable oxime linkage. The resulting conjugates demonstrated excellent pharmacokinetics, potent in vitro cytotoxic activity against Her2+ cancer cells, and complete tumor regression in rodent xenograft treatment models. The synthesis and characterization of homogeneous ADCs with medicinal chemistry-like control over macromolecular structure should facilitate the optimization of ADCs for a host of therapeutic uses.


Journal of the American Chemical Society | 2012

Synthesis of bispecific antibodies using genetically encoded unnatural amino acids.

Chan Hyuk Kim; Jun Y. Axup; Anna Dubrovska; Stephanie A. Kazane; Benjamin A. Hutchins; Erik D. Wold; Vaughn V. Smider; Peter G. Schultz

Bispecific antibodies were constructed using genetically encoded unnatural amino acids with orthogonal chemical reactivity. A two-step process afforded homogeneous products in excellent yield. Using this approach, we synthesized an anti-HER2/anti-CD3 bispecific antibody, which efficiently cross-linked HER2+ cells and CD3+ cells. In vitro effector-cell mediated cytotoxicity was observed at picomolar concentrations.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR

Stephanie A. Kazane; Devin Sok; Edward H. Cho; Maria Loressa Uson; Peter Kuhn; Peter G. Schultz; Vaughn V. Smider

Antibody conjugates are widely used as diagnostics and imaging reagents. However, many such conjugates suffer losses in sensitivity and specificity due to nonspecific labeling techniques. We have developed methodology to site-specifically conjugate oligonucleotides to antibodies containing a genetically encoded unnatural amino acid with orthogonal chemical reactivity. These oligobody molecules were used in immuno-PCR assays to detect Her2+ cells with greater sensitivity and specificity than nonspecifically coupled fragments, and can detect extremely rare Her2+ cells in a complex cellular environment. Such designed antibody-oligonucleotide conjugates should provide sensitive and specific reagents for diagnostics, as well as enable other unique applications based on oligobody building blocks.


Journal of the American Chemical Society | 2013

Self-Assembled Antibody Multimers through Peptide Nucleic Acid Conjugation

Stephanie A. Kazane; Jun Y. Axup; Chan Hyuk Kim; Mihai Ciobanu; Erik D. Wold; Sofia Barluenga; Benjamin A. Hutchins; Peter G. Schultz; Nicolas Winssinger; Vaughn V. Smider

With the recent clinical success of bispecific antibodies, a strategy to rapidly synthesize and evaluate bispecific or higher order multispecific molecules could facilitate the discovery of new therapeutic agents. Here, we show that unnatural amino acids (UAAs) with orthogonal chemical reactivity can be used to generate site-specific antibody-oligonucleotide conjugates. These constructs can then be self-assembled into multimeric complexes with defined composition, valency, and geometry. With this approach, we generated potent bispecific antibodies that recruit cytotoxic T lymphocytes to Her2 and CD20 positive cancer cells, as well as multimeric antibody fragments with enhanced activity. This strategy should accelerate the synthesis and in vitro characterization of antibody constructs with unique specificities and molecular architectures.


Journal of the American Chemical Society | 2013

Site-specific antibody-polymer conjugates for siRNA delivery.

Hua Lu; Danling Wang; Stephanie A. Kazane; Tsotne Javahishvili; Feng Tian; Frank Song; Aaron Sellers; Barney Barnett; Peter G. Schultz

We describe here the development of site-specific antibody-polymer conjugates (APCs) for the selective delivery of small interference RNAs (siRNAs) to target cells. APCs were synthesized in good yields by conjugating an aminooxy-derivatized cationic block copolymer to an anti-HER2 Fab or full-length IgG by means of genetically encoded p-acetyl phenylalanine (pAcF). The APCs all showed binding affinity comparable to that of HER2 as their native counterparts and no significant cellular cytotoxicity. Mutant S202-pAcF Fab and Q389-pAcF IgG polymer conjugates specifically delivered siRNAs to HER2(+) cells and mediated potent gene silencing at both the mRNA and protein levels. However, a mutant A121-pAcF IgG polymer conjugate, despite its high binding affinity to HER2 antigen, did not induce a significant RNA interference response in HER2(+) cells, presumably due to steric interference with antigen binding and internalization. These results highlight the importance of conjugation site on the activity of antibody-polymer-based therapeutics and suggest that such chemically defined APCs may afford a useful targeted delivery platform for siRNAs or other nucleic acid-based therapies.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Versatile strategy for controlling the specificity and activity of engineered T cells

Ji Young Kim; Stephanie A. Kazane; Seihyun Choi; Hwa Young Yun; Minsoo Kim; David T. Rodgers; Holly Pugh; Oded Singer; Sophie B. Sun; Bryan R. Fonslow; James N. Kochenderfer; Timothy M. Wright; Peter G. Schultz; Travis S. Young; Chan Hyuk Kim; Yu Cao

Significance Despite the unprecedented antileukemic response demonstrated in recent clinical trials, the inability to control the potent chimeric antigen receptor (CAR)—T-cell activity has resulted in several serious adverse incidents. Herein, we demonstrate that a switch-mediated CAR-T approach enables the titration of engineered T-cell antitumor activity, which was observed to be highly advantageous in reducing treatment-related toxicities in vivo. Moreover, we show that the use of optimized antibody-based switches readily enables a single CAR construct to target different antigens, indicating its potential application to treat tumor escape variants and heterogeneous tumors expressing distinct tumor antigens. Our data support the safe application of this potent immune cell-based therapy to target other types of cancer, including solid tumors, as well as nononcology indications. The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR–T-cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as “switch” molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a “universal” anti-FITC–directed CAR-T cell. Optimization of this CAR–switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR–T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy.


Chemistry & Biology | 2011

Selective Formation of Covalent Protein Heterodimers with an Unnatural Amino Acid

Benjamin M. Hutchins; Stephanie A. Kazane; Karin Staflin; Jane S. Forsyth; Vaughn V. Smider; Peter G. Schultz

We report a strategy for the generation of heterodimeric protein conjugates using an unnatural amino acid with orthogonal reactivity. This paper addresses the challenges of site-specificity and homogeneity with respect to the synthesis of bivalent proteins and antibody-drug conjugates. There are numerous antibody-drug conjugates in preclinical and clinical development, yet these are based either on nonspecific lysine coupling chemistry or on disulfide modification made difficult by the large number of cysteines in antibodies. Here, we describe a recombinant approach that can be used to rapidly generate a variety of constructs with defined conjugation sites. Moreover, this methodology results in homogeneous antibody conjugates whose biological, physical, and pharmacological properties can be quantitatively assessed and subsequently optimized. As proof of concept, we have generated anti-Her2 Fab-Saporin conjugates that demonstrate excellent potency in vitro.


Journal of the American Chemical Society | 2015

An immunosuppressive antibody-drug conjugate.

Rongsheng E. Wang; Tao Liu; Ying Wang; Yu Cao; Jintang Du; Xiaozhou Luo; Vishal Deshmukh; Chan Hyuk Kim; Brian R. Lawson; Matthew S. Tremblay; Travis S. Young; Stephanie A. Kazane; Feng Wang; Peter G. Schultz

We have developed a novel antibody-drug conjugate (ADC) that can selectively deliver the Lck inhibitor dasatinib to human T lymphocytes. This ADC is based on a humanized antibody that selectively binds with high affinity to CXCR4, an antigen that is selectively expressed on hematopoietic cells. The resulting dasatinib-antibody conjugate suppresses T-cell-receptor (TCR)-mediated T-cell activation and cytokine expression with low nM EC50 and has minimal effects on cell viability. This ADC may lead to a new class of selective immunosuppressive drugs with improved safety and extend the ADC strategy to the targeted delivery of kinase inhibitors for indications beyond oncology.


Journal of the American Chemical Society | 2015

An Anti-B Cell Maturation Antigen Bispecific Antibody for Multiple Myeloma

Nitya S. Ramadoss; Andrew Schulman; Seihyun Choi; David T. Rodgers; Stephanie A. Kazane; Chan Hyuk Kim; Brian R. Lawson; Travis S. Young

The development of immunotherapies for multiple myeloma is critical to provide new treatment strategies to combat drug resistance. We report a bispecific antibody against B cell maturation antigen (BiFab-BCMA), which potently and specifically redirects T cells to lyse malignant multiple myeloma cells. BiFab-BCMA lysed target BCMA-positive cell lines up to 20-fold more potently than a CS1-targeting bispecific antibody (BiFab-CS1) developed in an analogous fashion. Further, BiFab-BCMA robustly activated T cells in vitro and mediated rapid tumor regression in an orthotopic xenograft model of multiple myeloma. The in vitro and in vivo activities of BiFab-BCMA are comparable to those of anti-BCMA chimeric antigen receptor T cell therapy (CAR-T-BCMA), for which two clinical trials have recently been initiated. A BCMA-targeted bispecific antibody presents a promising treatment option for multiple myeloma.


Angewandte Chemie | 2014

A CXCR4-Targeted Site-Specific Antibody-Drug Conjugate

Sumith A. Kularatne; Vishal Deshmukh; Virginie Tardif; Reyna K. V. Lim; Holly Pugh; Ying Sun; Anthony Manibusan; Aaron Sellers; Richard S. Barnett; Shailaja Srinagesh; Jane S. Forsyth; Wolf Hassenpflug; Feng Tian; Tsotne Javahishvili; Brian R. Lawson; Stephanie A. Kazane; Peter G. Schultz

A chemically defined anti-CXCR4-auristatin antibody-drug conjugate (ADC) was synthesized that selectively eliminates tumor cells overexpressing the CXCR4 receptor. The unnatural amino acid p-acetylphenylalanine (pAcF) was site-specifically incorporated into an anti-CXCR4 immunoglobulin G (IgG) and conjugated to an auristatin through a stable, non-cleavable oxime linkage to afford a chemically homogeneous ADC. The full-length anti-CXCR4 ADC was selectively cytotoxic to CXCR4(+) cancer cells in vitro (half maximal effective concentration (EC50 )≈80-100 pM). Moreover, the anti-CXCR4 ADC eliminated pulmonary lesions from human osteosarcoma cells in a lung-seeding tumor model in mice. No significant overt toxicity was observed but there was a modest decrease in the bone-marrow-derived CXCR4(+) cell population. Because CXCR4 is highly expressed in a majority of metastatic cancers, a CXCR4-auristatin ADC may be useful for the treatment of a variety of metastatic malignancies.

Collaboration


Dive into the Stephanie A. Kazane's collaboration.

Top Co-Authors

Avatar

Peter G. Schultz

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Chan Hyuk Kim

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Vaughn V. Smider

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jun Y. Axup

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane S. Forsyth

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Seihyun Choi

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Yu Cao

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge