Stephanie A. Nick McElhinny
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie A. Nick McElhinny.
Molecular Cell | 2008
Stephanie A. Nick McElhinny; Dmitry A. Gordenin; Carrie M. Stith; Peter M. J. Burgers; Thomas A. Kunkel
DNA polymerase delta (Pol delta) and DNA polymerase epsilon (Pol epsilon) are both required for efficient replication of the nuclear genome, yet the division of labor between these enzymes has remained unclear for many years. Here we investigate the contribution of Pol delta to replication of the leading and lagging strand templates in Saccharomyces cerevisiae using a mutant Pol delta allele (pol3-L612M) whose error rate is higher for one mismatch (e.g., T x dGTP) than for its complement (A x dCTP). We find that strand-specific mutation rates strongly depend on the orientation of a reporter gene relative to an adjacent replication origin, in a manner implying that >90% of Pol delta replication is performed using the lagging strand template. When combined with recent evidence implicating Pol epsilon in leading strand replication, these data support a model of the replication fork wherein the leading and lagging strand templates are primarily copied by Pol epsilon and Pol delta, respectively.
Molecular and Cellular Biology | 2000
Stephanie A. Nick McElhinny; Carey M. Snowden; Joseph McCarville; Dale A. Ramsden
ABSTRACT Genetic experiments have determined that Ku, XRCC4, and ligase IV are required for repair of double-strand breaks by the end-joining pathway. The last two factors form a tight complex in cells. However, ligase IV is only one of three known mammalian ligases and is intrinsically the least active in intermolecular ligation; thus, the biochemical basis for requiring this ligase has been unclear. We demonstrate here a direct physical interaction between the XRCC4-ligase IV complex and Ku. This interaction is stimulated once Ku binds to DNA ends. Since XRCC4-ligase IV alone has very low DNA binding activity, Ku is required for effective recruitment of this ligase to DNA ends. We further show that this recruitment is critical for efficient end-joining activity in vitro. Preformation of a complex containing Ku and XRCC4-ligase IV increases the initial ligation rate 20-fold, indicating that recruitment of the ligase is an important limiting step in intermolecular ligation. Recruitment by Ku also allows XRCC4-ligase IV to use Kus high affinity for DNA ends to rapidly locate and ligate ends in an excess of unbroken DNA, a necessity for end joining in cells. These properties are conferred only on ligase IV, because Ku does not similarly interact with the other mammalian ligases. We have therefore defined cell-free conditions that reflect the genetic requirement for ligase IV in cellular end joining and consequently can explain in molecular terms why this factor is required.
Molecular and Cellular Biology | 2002
Kiran Mahajan; Stephanie A. Nick McElhinny; Beverly S. Mitchell; Dale A. Ramsden
ABSTRACT Mammalian DNA polymerase μ (pol μ) is related to terminal deoxynucleotidyl transferase, but its biological role is not yet clear. We show here that after exposure of cells to ionizing radiation (IR), levels of pol μ protein increase. pol μ also forms discrete nuclear foci after IR, and these foci are largely coincident with IR-induced foci of γH2AX, a previously characterized marker of sites of DNA double-strand breaks. pol μ is thus part of the cellular response to DNA double-strand breaks. pol μ also associates in cell extracts with the nonhomologous end-joining repair factor Ku and requires both Ku and another end-joining factor, XRCC4-ligase IV, to form a stable complex on DNA in vitro. pol μ in turn facilitates both stable recruitment of XRCC4-ligase IV to Ku-bound DNA and ligase IV-dependent end joining. In contrast, the related mammalian DNA polymerase β does not form a complex with Ku and XRCC4-ligase IV and is less effective than pol μ in facilitating joining mediated by these factors. Our data thus support an important role for pol μ in the end-joining pathway for repair of double-strand breaks.
Nature Chemical Biology | 2010
Stephanie A. Nick McElhinny; Dinesh Kumar; Alan B. Clark; Danielle L. Watt; Brian E. Watts; Else-Britt Lundström; Erik Johansson; Andrei Chabes; Thomas A. Kunkel
Maintaining the chemical identity of DNA depends on ribonucleotide exclusion by DNA polymerases. However, ribonucleotide exclusion during DNA synthesis in vitro is imperfect. To determine if ribonucleotides are incorporated during DNA replication in vivo, we substituted leucine or glycine for an active site methionine in yeast DNA polymerase ε (Pol ε). Compared to wild type Pol ε, ribonucleotide incorporation in vitro was 3-fold lower for M644L and 11-fold higher for M644G Pol ε. This hierarchy was re-capitulated in vivo in yeast strains lacking RNase H2. Moreover, the pol2-M644G rnh201Δ strain progressed more slowly through S-phase, had elevated dNTP pools and generated 2–5 base pair deletions in repetitive sequences at a high rate and gene orientation-dependent manner. The data indicate that ribonucleotides are incorporated during replication in vivo, that they are removed by RNase H2-dependent repair, and that defective repair results in replicative stress and genome instability via DNA strand misalignment.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Stephanie A. Nick McElhinny; Brian E. Watts; Dinesh Kumar; Danielle L. Watt; Else-Britt Lundström; Peter M. J. Burgers; Erik Johansson; Andrei Chabes; Thomas A. Kunkel
Measurements of nucleoside triphosphate levels in Saccharomyces cerevisiae reveal that the four rNTPs are in 36- to 190-fold molar excess over their corresponding dNTPs. During DNA synthesis in vitro using the physiological nucleoside triphosphate concentrations, yeast DNA polymerase ε, which is implicated in leading strand replication, incorporates one rNMP for every 1,250 dNMPs. Pol δ and Pol α, which conduct lagging strand replication, incorporate one rNMP for every 5,000 or 625 dNMPs, respectively. Discrimination against rNMP incorporation varies widely, in some cases by more than 100-fold, depending on the identity of the base and the template sequence context in which it is located. Given estimates of the amount of replication catalyzed by Pols α, δ, and ε, the results are consistent with the possibility that more than 10,000 rNMPs may be incorporated into the nuclear genome during each round of replication in yeast. Thus, rNMPs may be the most common noncanonical nucleotides introduced into the eukaryotic genome. Potential beneficial and negative consequences of abundant ribonucleotide incorporation into DNA are discussed, including the possibility that unrepaired rNMPs in DNA could be problematic because yeast DNA polymerase ε has difficulty bypassing a single rNMP present within a DNA template.
Molecular and Cellular Biology | 2003
Stephanie A. Nick McElhinny; Dale A. Ramsden
ABSTRACT DNA polymerases are defined as such because they use deoxynucleotides instead of ribonucleotides with high specificity. We show here that polymerase mu (pol μ), implicated in the nonhomologous end-joining pathway for repair of DNA double-strand breaks, incorporates both ribonucleotides and deoxynucleotides in a template-directed manner. pol μ has an approximately 1,000-fold-reduced ability to discriminate against ribonucleotides compared to that of the related pol β, although pol μs substrate specificity is similar to that of pol β in most other respects. Moreover, pol μ more frequently incorporates ribonucleotides when presented with nucleotide concentrations that approximate cellular pools. We therefore addressed the impact of ribonucleotide incorporation on the activities of factors required for double-strand break repair by nonhomologous end joining. We determined that the ligase required for this pathway readily joined strand breaks with terminal ribonucleotides. Most significantly, pol μ frequently introduced ribonucleotides into the repair junctions of an in vitro nonhomologous end-joining reaction, an activity that would be expected to have important consequences in the context of cellular double-strand break repair.
Nucleic Acids Research | 2006
Xuejun Zhong; Parie Garg; Carrie M. Stith; Stephanie A. Nick McElhinny; Grace E. Kissling; Peter M. J. Burgers; Thomas A. Kunkel
DNA polymerase zeta (pol ζ) participates in several DNA transactions in eukaryotic cells that increase spontaneous and damage-induced mutagenesis. To better understand this central role in mutagenesis in vivo, here we report the fidelity of DNA synthesis in vitro by yeast pol ζ alone and with RFC, PCNA and RPA. Overall, the accessory proteins have little effect on the fidelity of pol ζ. Pol ζ is relatively accurate for single base insertion/deletion errors. However, the average base substitution fidelity of pol ζ is substantially lower than that of homologous B family pols α, δ and ɛ. Pol ζ is particularly error prone for substitutions in specific sequence contexts and generates multiple single base errors clustered in short patches at a rate that is unprecedented in comparison with other polymerases. The unique error specificity of pol ζ in vitro is consistent with Pol ζ-dependent mutagenic specificity reported in vivo. This fact, combined with the high rate of single base substitution errors and complex mutations observed here, indicates that pol ζ contributes to mutagenesis in vivo not only by extending mismatches made by other polymerases, but also by directly generating its own mismatches and then extending them.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Andres A. Larrea; Scott A. Lujan; Stephanie A. Nick McElhinny; Piotr A. Mieczkowski; Michael A. Resnick; Dmitry A. Gordenin; Thomas A. Kunkel
To investigate DNA replication enzymology across the nuclear genome of budding yeast, deep sequencing was used to establish the pattern of uncorrected replication errors generated by an asymmetric mutator variant of DNA polymerase δ (Pol δ). Sequencing of 16 genomes identified 1,206-bp substitutions generated over 33 generations by L612M Pol δ in a mismatch repair defective strain. Alignment of sequences flanking these substitutions identified “hotspot” motifs for Pol δ replication errors. The substitutions were distributed evenly across all 16 chromosomes. The vast majority were transitions that occurred with a strand bias that varied in a predictable manner relative to known functional origins of replication. This strand bias strongly supports the idea that Pol δ is primarily a lagging strand polymerase during replication across the entire nuclear genome.
Journal of Biological Chemistry | 2007
Stephanie A. Nick McElhinny; Carrie M. Stith; Peter M. J. Burgers; Thomas A. Kunkel
DNA polymerase δ (pol δ) is a high fidelity eukaryotic enzyme that participates in DNA repair and is essential for DNA replication. Toward the goal of dissecting its multiple biological functions, here we describe the biochemical properties of Saccharomyces cerevisiae pol δ with a methionine replacing conserved leucine 612 at the polymerase active site. Compared with wild type pol δ, L612M pol δ has normal processivity and slightly higher polymerase specific activity. L612M pol δ also has normal 3′ exonuclease activity, yet it is impaired in partitioning mismatches to the exonuclease active site, thereby reducing DNA synthesis fidelity. Error rates in vitro for L612M pol δ are elevated for both base substitutions and single base deletions but in a highly biased manner. For each of the six possible pairs of reciprocal mismatches that could arise during replication of complementary DNA strands to account for any particular base substitution in vivo (e.g. T-dGMP or A-dCMP for T to C transitions), L612M pol δ error rates are substantially higher for one mismatch than the other. These results provide a biochemical explanation for our observation, which confirms earlier genetic studies, that a haploid pol3-L612M S. cerevisiae strain has an elevated spontaneous mutation rate that is likely due to reduced replication fidelity in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Stephanie A. Nick McElhinny; Grace E. Kissling; Thomas A. Kunkel
Mismatch repair (MMR) of replication errors requires DNA ends that can direct repair to the newly synthesized strand containing the error. For all but those organisms that use adenine methylation to generate nicks, the source of these ends in vivo is unknown. One possibility is that MMR may have a “special relation to the replication complex” [Wagner R, Jr., Meselson M (1976) Proc Natl Acad Sci USA 73:4135–4139], perhaps one that allows 5′ or 3′ DNA ends associated with replication to act as strand discrimination signals. Here we examine this hypothesis, based on the logic that errors made by yeast DNA polymerase α (Pol α), which initiates Okazaki fragments during lagging-strand replication, will always be closer to a 5′ end than will be more internal errors generated by DNA polymerase δ (Pol δ), which takes over for Pol α to complete lagging-strand replication. When we compared MMR efficiency for errors made by variant forms of these two polymerases, Msh2-dependent repair efficiencies for mismatches made by Pol α were consistently higher than for those same mismatches when made by Pol δ. Thus, one special relationship between MMR and replication is that MMR is more efficient for the least accurate of the major replicative polymerases, exonuclease-deficient Pol α. This observation is consistent with the close proximity and possible use of 5′ ends of Okazaki fragments for strand discrimination, which could increase the probability of Msh2-dependent MMR by 5′ excision, by a Msh2-dependent strand displacement mechanism, or both.