Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie A. Santorico is active.

Publication


Featured researches published by Stephanie A. Santorico.


Thorax | 2014

Cluster analysis in the COPDGene study identifies subtypes of smokers with distinct patterns of airway disease and emphysema

Peter J. Castaldi; Jennifer G. Dy; James C. Ross; Yale Chang; George R. Washko; Douglas Curran-Everett; Andre Williams; David A. Lynch; Barry J. Make; James D. Crapo; Russ P. Bowler; Elizabeth A. Regan; John E. Hokanson; Greg L Kinney; MeiLan K. Han; Xavier Soler; Joseph W Ramsdell; R. Graham Barr; Marilyn G. Foreman; Edwin Jacques Rudolph van Beek; Richard Casaburi; Gerald J. Criner; Sharon M. Lutz; Steven I Rennard; Stephanie A. Santorico; Frank C. Sciurba; Dawn L. DeMeo; Craig P. Hersh; Edwin K. Silverman; Michael H. Cho

Background There is notable heterogeneity in the clinical presentation of patients with COPD. To characterise this heterogeneity, we sought to identify subgroups of smokers by applying cluster analysis to data from the COPDGene study. Methods We applied a clustering method, k-means, to data from 10 192 smokers in the COPDGene study. After splitting the sample into a training and validation set, we evaluated three sets of input features across a range of k (user-specified number of clusters). Stable solutions were tested for association with four COPD-related measures and five genetic variants previously associated with COPD at genome-wide significance. The results were confirmed in the validation set. Findings We identified four clusters that can be characterised as (1) relatively resistant smokers (ie, no/mild obstruction and minimal emphysema despite heavy smoking), (2) mild upper zone emphysema-predominant, (3) airway disease-predominant and (4) severe emphysema. All clusters are strongly associated with COPD-related clinical characteristics, including exacerbations and dyspnoea (p<0.001). We found strong genetic associations between the mild upper zone emphysema group and rs1980057 near HHIP, and between the severe emphysema group and rs8034191 in the chromosome 15q region (p<0.001). All significant associations were replicated at p<0.05 in the validation sample (12/12 associations with clinical measures and 2/2 genetic associations). Interpretation Cluster analysis identifies four subgroups of smokers that show robust associations with clinical characteristics of COPD and known COPD-associated genetic variants.


The American Journal of Clinical Nutrition | 2016

Alterations in human milk leptin and insulin are associated with early changes in the infant intestinal microbiome

Dominick J. Lemas; Bridget E. Young; Peter R. Baker; Angela Tomczik; Taylor K. Soderborg; Teri L. Hernandez; Becky A. de la Houssaye; Charles E. Robertson; Michael C. Rudolph; Diana Ir; Zachary W. Patinkin; Nancy F. Krebs; Stephanie A. Santorico; Tiffany L. Weir; Linda A. Barbour; Daniel N. Frank; Jacob E. Friedman

BACKGROUND Increased maternal body mass index (BMI) is a robust risk factor for later pediatric obesity. Accumulating evidence suggests that human milk (HM) may attenuate the transfer of obesity from mother to offspring, potentially through its effects on early development of the infant microbiome. OBJECTIVES Our objective was to identify early differences in intestinal microbiota in a cohort of breastfeeding infants born to obese compared with normal-weight (NW) mothers. We also investigated relations between HM hormones (leptin and insulin) and both the taxonomic and functional potentials of the infant microbiome. DESIGN Clinical data and infant stool and fasting HM samples were collected from 18 NW [prepregnancy BMI (in kg/m(2)) <24.0] and 12 obese (prepregnancy BMI >30.0) mothers and their exclusively breastfed infants at 2 wk postpartum. Infant body composition at 2 wk was determined by air-displacement plethysmography. Infant gastrointestinal microbes were estimated by using 16S amplicon and whole-genome sequencing. HM insulin and leptin were determined by ELISA; short-chain fatty acids (SCFAs) were measured in stool samples by using gas chromatography. Power was set at 80%. RESULTS Infants born to obese mothers were exposed to 2-fold higher HM insulin and leptin concentrations (P < 0.01) and showed a significant reduction in the early pioneering bacteria Gammaproteobacteria (P = 0.03) and exhibited a trend for elevated total SCFA content (P < 0.06). Independent of maternal prepregnancy BMI, HM insulin was positively associated with both microbial taxonomic diversity (P = 0.03) and Gammaproteobacteria (e.g., Enterobacteriaceae; P = 0.04) and was negatively associated with Lactobacillales (e.g., Streptococcaceae; P = 0.05). Metagenomic analysis showed that HM leptin and insulin were associated with decreased bacterial proteases, which are implicated in intestinal permeability, and reduced concentrations of pyruvate kinase, a biomarker of pediatric gastrointestinal inflammation. CONCLUSION Our results indicate that, although maternal obesity may adversely affect the early infant intestinal microbiome, HM insulin and leptin are independently associated with beneficial microbial metabolic pathways predicted to increase intestinal barrier function and reduce intestinal inflammation. This trial was registered at clinicaltrials.gov as NCT01693406.


Frontiers in Integrative Neuroscience | 2014

Crowdsourcing taste research: genetic and phenotypic predictors of bitter taste perception as a model

Nicole L. Garneau; Tiffany M. Nuessle; Meghan M. Sloan; Stephanie A. Santorico; Bridget Coughlin; John E. Hayes

Understanding the influence of taste perception on food choice has captured the interest of academics, industry, and the general public, the latter as evidenced by the extent of popular media coverage and use of the term supertaster. Supertasters are highly sensitive to the bitter tastant propylthiouracil (PROP) and its chemical relative phenylthiocarbamide. The well-researched differences in taste sensitivity to these bitter chemicals are partially controlled by variation in the TAS2R38 gene; however, this variation alone does not explain the supertaster phenomenon. It has been suggested that density of papillae, which house taste buds, may explain supertasting. To address the unresolved role of papillae, we used crowdsourcing in the museum-based Genetics of Taste Lab. This community lab is uniquely situated to attract both a large population of human subjects and host a team of citizen scientists to research population-based questions about human genetics, taste, and health. Using this model, we find that PROP bitterness is not in any way predicted by papillae density. This result holds within the whole sample, when divided into major diplotypes, and when correcting for age, sex, and genotype. Furthermore, it holds when dividing participants into oft-used taster status groups. These data argue against the use of papillae density in predicting taste sensitivity and caution against imprecise use of the term supertaster. Furthermore, it supports a growing volume of evidence that sets the stage for hypergeusia, a reconceptualization of heightened oral sensitivity that is not based solely on PROP or papillae density. Finally, our model demonstrates how community-based research can serve as a unique venue for both study participation and citizen science that makes scientific research accessible and relevant to people’s everyday lives.


PLOS Genetics | 2016

Genome-Wide Association Study Reveals Multiple Loci Influencing Normal Human Facial Morphology

John R. Shaffer; Ekaterina Orlova; Myoung Keun Lee; Elizabeth J. Leslie; Zachary D. Raffensperger; Carrie L. Heike; Michael L. Cunningham; Jacqueline T. Hecht; Chung How Kau; Nichole L. Nidey; Lina M. Moreno; George L. Wehby; Jeffrey C. Murray; Cecelia A. Laurie; Cathy C. Laurie; Joanne B. Cole; Tracey M. Ferrara; Stephanie A. Santorico; Ophir D. Klein; Washington Mio; Eleanor Feingold; Benedikt Hallgrímsson; Richard A. Spritz; Mary L. Marazita; Seth M. Weinberg

Numerous lines of evidence point to a genetic basis for facial morphology in humans, yet little is known about how specific genetic variants relate to the phenotypic expression of many common facial features. We conducted genome-wide association meta-analyses of 20 quantitative facial measurements derived from the 3D surface images of 3118 healthy individuals of European ancestry belonging to two US cohorts. Analyses were performed on just under one million genotyped SNPs (Illumina OmniExpress+Exome v1.2 array) imputed to the 1000 Genomes reference panel (Phase 3). We observed genome-wide significant associations (p < 5 x 10−8) for cranial base width at 14q21.1 and 20q12, intercanthal width at 1p13.3 and Xq13.2, nasal width at 20p11.22, nasal ala length at 14q11.2, and upper facial depth at 11q22.1. Several genes in the associated regions are known to play roles in craniofacial development or in syndromes affecting the face: MAFB, PAX9, MIPOL1, ALX3, HDAC8, and PAX1. We also tested genotype-phenotype associations reported in two previous genome-wide studies and found evidence of replication for nasal ala length and SNPs in CACNA2D3 and PRDM16. These results provide further evidence that common variants in regions harboring genes of known craniofacial function contribute to normal variation in human facial features. Improved understanding of the genes associated with facial morphology in healthy individuals can provide insights into the pathways and mechanisms controlling normal and abnormal facial morphogenesis.


Nature Genetics | 2016

Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants

Ying Jin; Genevieve H.L. Andersen; Daniel Yorgov; Tracey M. Ferrara; Songtao Ben; Kelly M. Brownson; Paulene J. Holland; Stanca A. Birlea; Janet Siebert; Anke Hartmann; Anne Lienert; Nanja van Geel; Jo Lambert; Rosalie M. Luiten; Albert Wolkerstorfer; J.P. Wietze van der Veen; Dorothy C. Bennett; Alain Taïeb; Khaled Ezzedine; E. Helen Kemp; David J. Gawkrodger; Anthony P. Weetman; Sulev Kõks; Ele Prans; Külli Kingo; Maire Karelson; Margaret R. Wallace; Wayne T. McCormack; Andreas Overbeck; Silvia Moretti

Vitiligo is an autoimmune disease in which depigmented skin results from the destruction of melanocytes, with epidemiological association with other autoimmune diseases. In previous linkage and genome-wide association studies (GWAS1 and GWAS2), we identified 27 vitiligo susceptibility loci in patients of European ancestry. We carried out a third GWAS (GWAS3) in European-ancestry subjects, with augmented GWAS1 and GWAS2 controls, genome-wide imputation, and meta-analysis of all three GWAS, followed by an independent replication. The combined analyses, with 4,680 cases and 39,586 controls, identified 23 new significantly associated loci and 7 suggestive loci. Most encode immune and apoptotic regulators, with some also associated with other autoimmune diseases, as well as several melanocyte regulators. Bioinformatic analyses indicate a predominance of causal regulatory variation, some of which corresponds to expression quantitative trait loci (eQTLs) at these loci. Together, the identified genes provide a framework for the genetic architecture and pathobiology of vitiligo, highlight relationships with other autoimmune diseases and melanoma, and offer potential targets for treatment.


PLOS Genetics | 2016

Genomewide Association Study of African Children Identifies Association of SCHIP1 and PDE8A with Facial Size and Shape

Joanne B. Cole; Mange Manyama; Emmanuel Kimwaga; Joshua Mathayo; Jacinda R. Larson; Denise K. Liberton; Ken Lukowiak; Tracey M. Ferrara; Sheri L. Riccardi; Mao Li; Washington Mio; Michaela Prochazkova; Trevor Williams; Hong Li; Kenneth L. Jones; Ophir D. Klein; Stephanie A. Santorico; Benedikt Hallgrímsson; Richard A. Spritz

The human face is a complex assemblage of highly variable yet clearly heritable anatomic structures that together make each of us unique, distinguishable, and recognizable. Relatively little is known about the genetic underpinnings of normal human facial variation. To address this, we carried out a large genomewide association study and two independent replication studies of Bantu African children and adolescents from Mwanza, Tanzania, a region that is both genetically and environmentally relatively homogeneous. We tested for genetic association of facial shape and size phenotypes derived from 3D imaging and automated landmarking of standard facial morphometric points. SNPs within genes SCHIP1 and PDE8A were associated with measures of facial size in both the GWAS and replication cohorts and passed a stringent genomewide significance threshold adjusted for multiple testing of 34 correlated traits. For both SCHIP1 and PDE8A, we demonstrated clear expression in the developing mouse face by both whole-mount in situ hybridization and RNA-seq, supporting their involvement in facial morphogenesis. Ten additional loci demonstrated suggestive association with various measures of facial shape. Our findings, which differ from those in previous studies of European-derived whites, augment understanding of the genetic basis of normal facial development, and provide insights relevant to both human disease and forensics.


Proceedings of the National Academy of Sciences of the United States of America | 2016

MHC class II super-enhancer increases surface expression of HLA-DR and HLA-DQ and affects cytokine production in autoimmune vitiligo

Giulio Cavalli; Masahiro Hayashi; Ying Jin; Daniel Yorgov; Stephanie A. Santorico; C Holcomb; M Rastrou; Henry A. Erlich; Isak W. Tengesdal; Lorenzo Dagna; C P Neff; Brent E. Palmer; Richard A. Spritz; Charles A. Dinarello

Significance Vitiligo is a classic autoimmune disease genetically associated with SNPs in the MHC class II region. To date, the impact of HLA molecules on autoimmunity has focused on structural diversity of antigen presentation. Here, we describe the properties of a 47-nucleotide high-risk haplotype of three SNPs within an intergenic “super-enhancer” located between the HLA-DRB1 and HLA-DQA1 genes, localized by a genome-wide association study of 2,853 subjects with vitiligo. Monocytes from healthy subjects homozygous for the high-risk haplotype have increased surface expression of HLA-DR and -DQ, and peripheral blood mononuclear cells from high-risk subjects produce more IL-1β and IFN-γ upon engagement of dectin-1, mannose, and Toll-like receptors. This study underscores the importance of transcriptional regulation of HLA genes to the risk of developing an autoimmune disease. Genetic risk for autoimmunity in HLA genes is most often attributed to structural specificity resulting in presentation of self-antigens. Autoimmune vitiligo is strongly associated with the MHC class II region. Here, we fine-map vitiligo MHC class II genetic risk to three SNPs only 47 bp apart, located within a predicted super-enhancer in an intergenic region between HLA-DRB1 and HLA-DQA1, localized by a genome-wide association study of 2,853 Caucasian vitiligo patients. The super-enhancer corresponds to an expression quantitative trait locus for expression of HLA-DR and HLA-DQ RNA; we observed elevated surface expression of HLA-DR (P = 0.008) and HLA-DQ (P = 0.02) on monocytes from healthy subjects homozygous for the high-risk SNP haplotype. Unexpectedly, pathogen-stimulated peripheral blood mononuclear cells from subjects homozygous for the high-risk super-enhancer haplotype exhibited greater increase in production of IFN-γ and IL-1β than cells from subjects homozygous for the low-risk haplotype. Specifically, production of IFN-γ on stimulation of dectin-1, mannose, and Toll-like receptors with Candida albicans and Staphylococcus epidermidis was 2.5- and 2.9-fold higher in high-risk subjects than in low-risk subjects, respectively (P = 0.007 and P = 0.01). Similarly, production of IL-1β was fivefold higher in high-risk subjects than in low-risk subjects (P = 0.02). Increased production of immunostimulatory cytokines in subjects carrying the high-risk haplotype may act as an “adjuvant” during the presentation of autoantigens, tying together genetic variation in the MHC with the development of autoimmunity. This study demonstrates that for risk of autoimmune vitiligo, expression level of HLA class II molecules is as or more important than antigen specificity.


Journal of Pediatric Gastroenterology and Nutrition | 2016

Mode of Delivery Determines Neonatal Pharyngeal Bacterial Composition and Early Intestinal Colonization.

David E. Brumbaugh; Jaime Arruda; Kristen Robbins; Diana Ir; Stephanie A. Santorico; Charles E. Robertson; Daniel N. Frank

Objectives: Bacterial colonization and succession of the human intestine shape development of immune function and risk for allergic disease, yet these processes remain poorly understood. We investigated the relations between delivery mode, initial bacterial inoculation of the infant oropharynx (OP), and intestinal colonization. Methods: We prospectively collected maternal rectal and vaginal swabs, infant OP aspirates, and infant stool from 23 healthy mother/infant pairs delivering by cesarean (CS) or vaginal delivery (VD) in an academic hospital. Bacterial abundance (16S rRNA sequencing) and community similarity between samples were compared by delivery mode. Shotgun DNA metagenomic sequencing of infant stool was performed. Results: VD infants had higher abundance of Firmicutes (mainly lactobacilli) in OP aspirates whereas CS OP aspirates were enriched in skin bacteria. OP aspirates were more similar to maternal vaginal and rectal microbiomes in VD compared with CS. Bacteroidetes were more abundant through 6 weeks in stool of VD infants. Infant fecal microbiomes in both delivery groups did not resemble maternal rectal or vaginal microbiomes. Differences in fecal bacterial gene potential between CS and VD at 6 weeks clustered in metabolic pathways and were mediated by abundance of Proteobacteria and Bacteroidetes. Conclusions: CS infants exhibited different microbiota in the oral inoculum, a chaotic pattern of bacterial succession, and a persistent deficit of intestinal Bacteroidetes. Pioneer OP bacteria transferred from maternal vaginal and intestinal communities were not prominent constituents of the early infant fecal microbiome. Oral inoculation at birth may impact the intestinal microenvironment, thereby modulating early succession of intestinal bacteria.


Journal of Visualized Experiments | 2015

Denver Papillae Protocol for Objective Analysis of Fungiform Papillae

Tiffany M. Nuessle; Nicole L. Garneau; Meghan M. Sloan; Stephanie A. Santorico

The goal of the Denver Papillae Protocol is to use a dichotomous key to define and prioritize the characteristics of fungiform papillae (FP) to ensure consistent scoring between scorers. This protocol builds off of a need that has arisen from the last two decades of taste research using FP as a proxy for taste pore density. FP density has historically been analyzed using Miller & Reedy’s 1990 characterizations of their morphology: round, stained lighter, large, and elevated. In this work, the authors forewarned that stricter definitions of FP morphology needed to be outlined. Despite this call to action, follow up literature has been scarce, with most studies continuing to cite Miller & Reedy’s original work. Consequently, FP density reports have been highly variable and, combined with small sample sizes, may contribute to the discrepant conclusions on the role of FP in taste sensitivity. The Genetics of Taste Lab explored this apparent inconsistency in counting and found that scorers were individually prioritizing the importance of these characteristics differently and had no guidance for when a papilla had some, but not all, of the reported qualities of FP. The result of this subjectivity is highly variable FP counts of the same tongue image. The Denver Papillae Protocol has been developed to remedy this consequence through use of a dichotomous key that further defines and prioritizes the importance of the characteristics put forth by Miller & Reedy. The proposed method could help create a standard way to quantify FP for researchers in the field of taste and nutritional studies.


PLOS ONE | 2015

Effects of Vaccination with 10-Valent Pneumococcal Non-Typeable Haemophilus influenza Protein D Conjugate Vaccine (PHiD-CV) on the Nasopharyngeal Microbiome of Kenyan Toddlers.

Leah M. Feazel; Stephanie A. Santorico; Charles E. Robertson; Mahfudh Bashraheil; J. Anthony G. Scott; Daniel N. Frank; Laura L. Hammitt

Objective Pneumococcal conjugate vaccines reduce the prevalence of vaccine serotypes carried in the nasopharynx. Because this could alter carriage of other potential pathogens, we assessed the nasopharyngeal microbiome of children who had been vaccinated with 10-valent pneumococcal non-typeable Haemophilus influenzae protein-D conjugate vaccine (PHiD-CV). Methods Profiles of the nasopharyngeal microbiota of 60 children aged 12-59 months, who had been randomized to receive 2 doses of PHiD-CV (n=30) or Hepatitis A vaccine (n=30) 60 days apart, were constructed by 16S rRNA gene pyrosequencing of swab specimens collected before vaccination and 180 days after dose 1. Results Prior to vaccination, Moraxella catarrhalis (median of 12.3% of sequences/subject), Streptococcus pneumoniae (4.4%) and Corynebacterium spp. (5.6%) were the most abundant nasopharyngeal bacterial species. Vaccination with PHiD-CV did not significantly alter the species composition, abundance, or prevalence of known pathogens. Distinct microbiomes were identified based on the abundances of Streptococcus, Moraxella, and Haemophilus species. These microbiomes shifted in composition over the study period and were independent of age, sex, school attendance, antibiotic exposure, and vaccination. Conclusions Vaccination of children with two doses of PHiD-CV did not significantly alter the nasopharyngeal microbiome. This suggests limited replacement carriage with pathogens other than non-vaccine strains of S. pneumoniae. Trial Registration clinicaltrials.gov NCT01028326

Collaboration


Dive into the Stephanie A. Santorico's collaboration.

Top Co-Authors

Avatar

Richard A. Spritz

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Ying Jin

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Tracey M. Ferrara

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Daniel Yorgov

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Daniel N. Frank

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Joanne B. Cole

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles E. Robertson

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Washington Mio

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge