Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Bertram is active.

Publication


Featured researches published by Stephanie Bertram.


Journal of Virology | 2009

Proteolytic activation of the 1918 influenza virus hemagglutinin.

Chawaree Chaipan; Darwyn Kobasa; Stephanie Bertram; Ilona Glowacka; Imke Steffen; Theodros Solomon Tsegaye; Makoto Takeda; Thomas H. Bugge; Semi Kim; Young Woo Park; Andrea Marzi; Stefan Pöhlmann

ABSTRACT Proteolytic activation of the hemagglutinin (HA) protein is indispensable for influenza virus infectivity, and the tissue expression of the responsible cellular proteases impacts viral tropism and pathogenicity. The HA protein critically contributes to the exceptionally high pathogenicity of the 1918 influenza virus, but the mechanisms underlying cleavage activation of the 1918 HA have not been characterized. The neuraminidase (NA) protein of the 1918 influenza virus allows trypsin-independent growth in canine kidney cells (MDCK). However, it is at present unknown if the 1918 NA, like the NA of the closely related strain A/WSN/33, facilitates HA cleavage activation by recruiting the proprotease plasminogen. Moreover, it is not known which pulmonary proteases activate the 1918 HA. We provide evidence that NA-dependent, trypsin-independent cleavage activation of the 1918 HA is cell line dependent and most likely plasminogen independent since the 1918 NA failed to recruit plasminogen and neither exogenous plasminogen nor the presence of the A/WSN/33 NA promoted efficient cleavage of the 1918 HA. The transmembrane serine protease TMPRSS4 was found to be expressed in lung tissue and was shown to cleave the 1918 HA. Accordingly, coexpression of the 1918 HA with TMPRSS4 or the previously identified HA-processing protease TMPRSS2 allowed trypsin-independent infection by pseuodotypes bearing the 1918 HA, indicating that these proteases might support 1918 influenza virus spread in the lung. In summary, we show that the previously reported 1918 NA-dependent spread of the 1918 influenza virus is a cell line-dependent phenomenon and is not due to plasminogen recruitment by the 1918 NA. Moreover, we provide evidence that TMPRSS2 and TMPRSS4 activate the 1918 HA by cleavage and therefore may promote viral spread in lung tissue.


Journal of Virology | 2013

The spike-protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2 and is targeted by neutralizing antibodies

Stefanie Gierer; Stephanie Bertram; Franziska Kaup; Florian Wrensch; Adeline Heurich; Annika Krämer-Kühl; Kathrin Welsch; Michael Winkler; Benjamin Meyer; Christian Drosten; Ulf Dittmer; Thomas von Hahn; Graham Simmons; Heike Hofmann; Stefan Pöhlmann

ABSTRACT The novel human coronavirus EMC (hCoV-EMC), which recently emerged in Saudi Arabia, is highly pathogenic and could pose a significant threat to public health. The elucidation of hCoV-EMC interactions with host cells is critical to our understanding of the pathogenesis of this virus and to the identification of targets for antiviral intervention. Here we investigated the viral and cellular determinants governing hCoV-EMC entry into host cells. We found that the spike protein of hCoV-EMC (EMC-S) is incorporated into lentiviral particles and mediates transduction of human cell lines derived from different organs, including the lungs, kidneys, and colon, as well as primary human macrophages. Expression of the known coronavirus receptors ACE2, CD13, and CEACAM1 did not facilitate EMC-S-driven transduction, suggesting that hCoV-EMC uses a novel receptor for entry. Directed protease expression and inhibition analyses revealed that TMPRSS2 and endosomal cathepsins activate EMC-S for virus-cell fusion and constitute potential targets for antiviral intervention. Finally, EMC-S-driven transduction was abrogated by serum from an hCoV-EMC-infected patient, indicating that EMC-S-specific neutralizing antibodies can be generated in patients. Collectively, our results indicate that hCoV-EMC uses a novel receptor for protease-activated entry into human cells and might be capable of extrapulmonary spread. In addition, they define TMPRSS2 and cathepsins B and L as potential targets for intervention and suggest that neutralizing antibodies contribute to the control of hCoV-EMC infection.


Journal of Virology | 2010

TMPRSS2 and TMPRSS4 Facilitate Trypsin-Independent Spread of Influenza Virus in Caco-2 Cells

Stephanie Bertram; Ilona Glowacka; Paulina Blazejewska; Elizabeth J. Soilleux; Paul D. Allen; Simon Danisch; Imke Steffen; So-Young Choi; Young Woo Park; Heike Schneider; Klaus Schughart; Stefan Pöhlmann

ABSTRACT Proteolysis of influenza virus hemagglutinin by host cell proteases is essential for viral infectivity, but the proteases responsible are not well defined. Recently, we showed that engineered expression of the type II transmembrane serine proteases (TTSPs) TMPRSS2 and TMPRSS4 allows hemagglutinin (HA) cleavage. Here we analyzed whether TMPRSS2 and TMPRSS4 are expressed in influenza virus target cells and support viral spread in the absence of exogenously added protease (trypsin). We found that transient expression of TMPRSS2 and TMPRSS4 resulted in HA cleavage and trypsin-independent viral spread. Endogenous expression of TMPRSS2 and TMPRSS4 in cell lines correlated with the ability to support the spread of influenza virus in the absence of trypsin, indicating that these proteases might activate influenza virus in naturally permissive cells. Indeed, RNA interference (RNAi)-mediated knockdown of both TMPRSS2 and TMPRSS4 in Caco-2 cells, which released fully infectious virus without trypsin treatment, markedly reduced the spread of influenza virus, demonstrating that these proteases were responsible for efficient proteolytic activation of HA in this cell line. Finally, TMPRSS2 was found to be coexpressed with the major receptor determinant of human influenza viruses, 2,6-linked sialic acids, in human alveolar epithelium, indicating that viral target cells in the human respiratory tract express TMPRSS2. Collectively, our results point toward an important role for TMPRSS2 and possibly TMPRSS4 in influenza virus replication and highlight the former protease as a potential therapeutic target.


Reviews in Medical Virology | 2010

Novel insights into proteolytic cleavage of influenza virus hemagglutinin

Stephanie Bertram; Ilona Glowacka; Imke Steffen; Annika Kühl; Stefan Pöhlmann

The influenza virus hemagglutinin (HA) mediates the first essential step in the viral life cycle, virus entry into target cells. Influenza virus HA is synthesised as a precursor protein in infected cells and requires cleavage by host cell proteases to transit into an active form. Cleavage is essential for influenza virus infectivity and the HA‐processing proteases are attractive targets for therapeutic intervention. It is well established that cleavage by ubiquitously expressed subtilisin‐like proteases is a hallmark of highly pathogenic avian influenza viruses (HPAIV). In contrast, the nature of the proteases responsible for cleavage of HA of human influenza viruses and low pathogenic avian influenza viruses (LPAIV) is not well understood. Recent studies suggest that cleavage of HA of human influenza viruses might be a cell‐associated event and might be facilitated by the type II transmembrane serine proteases (TTSPs) TMPRSS2, TMPRSS4 and human airway trypsin‐like protease (HAT). Here, we will introduce the different concepts established for proteolytic activation of influenza virus HA, with a particular focus on the role of TTSPs, and we will discuss their implications for viral tropism, pathogenicity and antiviral intervention. Copyright


Journal of Virology | 2011

Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response

Ilona Glowacka; Stephanie Bertram; Marcel A. Müller; Paul Allen; Elizabeth J. Soilleux; Susanne Pfefferle; Imke Steffen; Theodros Solomon Tsegaye; Yuxian He; Kerstin Gnirss; Daniela Niemeyer; Heike Schneider; Christian Drosten; Stefan Pöhlmann

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) can be proteolytically activated by cathepsins B and L upon viral uptake into target cell endosomes. In contrast, it is largely unknown whether host cell proteases located in the secretory pathway of infected cells and/or on the surface of target cells can cleave SARS S. We along with others could previously show that the type II transmembrane protease TMPRSS2 activates the influenza virus hemagglutinin and the human metapneumovirus F protein by cleavage. Here, we assessed whether SARS S is proteolytically processed by TMPRSS2. Western blot analysis revealed that SARS S was cleaved into several fragments upon coexpression of TMPRSS2 (cis-cleavage) and upon contact between SARS S-expressing cells and TMPRSS2-positive cells (trans-cleavage). cis-cleavage resulted in release of SARS S fragments into the cellular supernatant and in inhibition of antibody-mediated neutralization, most likely because SARS S fragments function as antibody decoys. trans-cleavage activated SARS S on effector cells for fusion with target cells and allowed efficient SARS S-driven viral entry into targets treated with a lysosomotropic agent or a cathepsin inhibitor. Finally, ACE2, the cellular receptor for SARS-CoV, and TMPRSS2 were found to be coexpressed by type II pneumocytes, which represent important viral target cells, suggesting that SARS S is cleaved by TMPRSS2 in the lung of SARS-CoV-infected individuals. In summary, we show that TMPRSS2 might promote viral spread and pathogenesis by diminishing viral recognition by neutralizing antibodies and by activating SARS S for cell-cell and virus-cell fusion.


Trends in Molecular Medicine | 2009

Type II transmembrane serine proteases in cancer and viral infections.

So-Young Choi; Stephanie Bertram; Ilona Glowacka; Young Woo Park; Stefan Pöhlmann

Regulated proteolysis of cellular factors is pivotal to tissue development and homeostasis, whereas uncontrolled proteolytic activity is linked to disease. Type II transmembrane serine proteases (TTSPs) are expressed at the cell surface and are thus ideally located to regulate cell-cell and cell-matrix interactions. Increasing evidence demonstrates that aberrant expression of TTSPs is a hallmark of several cancers and recent studies have defined molecular mechanisms underlying TTSP-promoted carcinogenesis. In addition, new findings suggest that influenza and other respiratory viruses could exploit TTSPs to promote their spread, making these proteases potential targets for intervention in cancer and viral infections. Here, we review the role of TTSPs in tumorigenesis and viral infection and discuss potential approaches to therapy.


Journal of Virology | 2011

Cleavage and Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease

Stephanie Bertram; Ilona Glowacka; Marcel A. Müller; Hayley Lavender; Kerstin Gnirss; Inga Nehlmeier; Daniela Niemeyer; Yuxian He; Graham Simmons; Christian Drosten; Elizabeth J. Soilleux; Olaf Jahn; Imke Steffen; Stefan Pöhlmann

ABSTRACT The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) poses a constant threat to human health. The viral spike protein (SARS-S) mediates host cell entry and is a potential target for antiviral intervention. Activation of SARS-S by host cell proteases is essential for SARS-CoV infectivity but remains incompletely understood. Here, we analyzed the role of the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), in SARS-S activation. We found that HAT activates SARS-S in the context of surrogate systems and authentic SARS-CoV infection and is coexpressed with the viral receptor angiotensin-converting enzyme 2 (ACE2) in bronchial epithelial cells and pneumocytes. HAT cleaved SARS-S at R667, as determined by mutagenesis and mass spectrometry, and activated SARS-S for cell-cell fusion in cis and trans, while the related pulmonary protease TMPRSS2 cleaved SARS-S at multiple sites and activated SARS-S only in trans. However, TMPRSS2 but not HAT expression rendered SARS-S-driven virus-cell fusion independent of cathepsin activity, indicating that HAT and TMPRSS2 activate SARS-S differentially. Collectively, our results show that HAT cleaves and activates SARS-S and might support viral spread in patients.


PLOS Pathogens | 2013

Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice.

Bastian Hatesuer; Stephanie Bertram; Nora Mehnert; Mahmoud M Bahgat; Peter S. Nelson; Stefan Pöhlman; Klaus Schughart

Annual influenza epidemics and occasional pandemics pose a severe threat to human health. Host cell factors required for viral spread but not for cellular survival are attractive targets for novel approaches to antiviral intervention. The cleavage activation of the influenza virus hemagglutinin (HA) by host cell proteases is essential for viral infectivity. However, it is unknown which proteases activate influenza viruses in mammals. Several candidates have been identified in cell culture studies, leading to the concept that influenza viruses can employ multiple enzymes to ensure their cleavage activation in the host. Here, we show that deletion of a single HA-activating protease gene, Tmprss2, in mice inhibits spread of mono-basic H1N1 influenza viruses, including the pandemic 2009 swine influenza virus. Lung pathology was strongly reduced and mutant mice were protected from weight loss, death and impairment of lung function. Also, after infection with mono-basic H3N2 influenza A virus body weight loss and survival was less severe in Tmprss2 mutant compared to wild type mice. As expected, Tmprss2-deficient mice were not protected from viral spread and pathology after infection with multi-basic H7N7 influenza A virus. In conclusion, these results identify TMPRSS2 as a host cell factor essential for viral spread and pathogenesis of mono-basic H1N1 and H3N2 influenza A viruses.


Journal of Virology | 2013

TMPRSS2 Activates the Human Coronavirus 229E for Cathepsin-Independent Host Cell Entry and Is Expressed in Viral Target Cells in the Respiratory Epithelium

Stephanie Bertram; Ronald Dijkman; Matthias Habjan; Adeline Heurich; Stefanie Gierer; Ilona Glowacka; Kathrin Welsch; Michael Winkler; Heike Schneider; Heike Hofmann-Winkler; Volker Thiel; Stefan Pöhlmann

ABSTRACT Infection with human coronavirus 229E (HCoV-229E) is associated with the common cold and may result in pneumonia in immunocompromised patients. The viral spike (S) protein is incorporated into the viral envelope and mediates infectious entry of HCoV-229E into host cells, a process that depends on the activation of the S-protein by host cell proteases. However, the proteases responsible for HCoV-229E activation are incompletely defined. Here we show that the type II transmembrane serine proteases TMPRSS2 and HAT cleave the HCoV-229E S-protein (229E-S) and augment 229E-S-driven cell-cell fusion, suggesting that TMPRSS2 and HAT can activate 229E-S. Indeed, engineered expression of TMPRSS2 and HAT rendered 229E-S-driven virus-cell fusion insensitive to an inhibitor of cathepsin L, a protease previously shown to facilitate HCoV-229E infection. Inhibition of endogenous cathepsin L or TMPRSS2 demonstrated that both proteases can activate 229E-S for entry into cells that are naturally susceptible to infection. In addition, evidence was obtained that activation by TMPRSS2 rescues 229E-S-dependent cell entry from inhibition by IFITM proteins. Finally, immunohistochemistry revealed that TMPRSS2 is coexpressed with CD13, the HCoV-229E receptor, in human airway epithelial (HAE) cells, and that CD13+ TMPRSS2+ cells are preferentially targeted by HCoV-229E, suggesting that TMPRSS2 can activate HCoV-229E in infected humans. In sum, our results indicate that HCoV-229E can employ redundant proteolytic pathways to ensure its activation in host cells. In addition, our observations and previous work suggest that diverse human respiratory viruses are activated by TMPRSS2, which may constitute a target for antiviral intervention.


Virology | 2012

Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression

Kerstin Gnirß; Annika Kühl; Christina B. Karsten; Ilona Glowacka; Stephanie Bertram; Franziska Kaup; Heike Hofmann; Stefan Pöhlmann

Abstract Ebola (EBOV) and Marburg virus (MARV) cause severe hemorrhagic fever. The host cell proteases cathepsin B and L activate the Zaire ebolavirus glycoprotein (GP) for cellular entry and constitute potential targets for antiviral intervention. However, it is unclear if different EBOV species and MARV equally depend on cathepsin B/L activity for infection of cell lines and macrophages, important viral target cells. Here, we show that cathepsin B/L inhibitors markedly reduce 293T cell infection driven by the GPs of all EBOV species, independent of the type II transmembrane serine protease TMPRSS2, which cleaved but failed to activate EBOV-GPs. Similarly, a cathepsin B/L inhibitor blocked macrophage infection mediated by different EBOV-GPs. In contrast, MARV-GP-driven entry exhibited little dependence on cathepsin B/L activity. Still, MARV-GP-mediated entry was efficiently blocked by leupeptin. These results suggest that cathepsins B/L promote entry of EBOV while MARV might employ so far unidentified proteases for GP activation.

Collaboration


Dive into the Stephanie Bertram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Imke Steffen

Systems Research Institute

View shared research outputs
Top Co-Authors

Avatar

Graham Simmons

University of California

View shared research outputs
Top Co-Authors

Avatar

Christian Drosten

Bernhard Nocht Institute for Tropical Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika Kühl

Hannover Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge