Stephanie Bleicken
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie Bleicken.
Journal of Biological Chemistry | 2010
Stephanie Bleicken; Mirjam Classen; Pulagam V. L. Padmavathi; Takashi Ishikawa; Kornelius Zeth; Heinz-Juergen Steinhoff; Enrica Bordignon
Bax and Bid are pro-apoptotic members of the Bcl-2 protein family. Upon cleavage by caspase-8, Bid activates Bax. Activated Bax inserts into the mitochondrial outer membrane forming oligomers which lead to membrane poration, release of cytochrome c, and apoptosis. The detailed mechanism of Bax activation and the topology and composition of the oligomers are still under debate. Here molecular details of Bax activation and oligomerization were obtained by application of several biophysical techniques, including atomic force microscopy, cryoelectron microscopy, and particularly electron paramagnetic resonance (EPR) spectroscopy performed on spin-labeled Bax. Incubation with detergents, reconstitution, and Bid-triggered insertion into liposomes were found to be effective in inducing Bax oligomerization. Bid was shown to activate Bax independently of the stoichiometric ratio, suggesting that Bid has a catalytic function and that the interaction with Bax is transient. The formation of a stable dimerization interface involving two Bcl-2 homology 3 (BH3) domains was found to be the nucleation event for Bax homo-oligomerization. Based on intermolecular distance determined by EPR, a model of six adjacent Bax molecules in the oligomer is presented where the hydrophobic hairpins (helices α5 and α6) are equally spaced in the membrane and the two BH3 domains are in close vicinity in the dimer interface, separated by >5 nm from the next BH3 pairs.
Molecular Cell | 2014
Stephanie Bleicken; Gunnar Jeschke; Carolin Stegmueller; Raquel Salvador-Gallego; Ana J. García-Sáez; Enrica Bordignon
Bax plays a central role in the mitochondrial pathway of apoptosis. Upon activation, cytosolic Bax monomers oligomerize on the surface of mitochondria and change conformation concertedly to punch holes into the outer membrane. The subsequent release of cytochrome c initiates cell death. However, the structure of membrane-inserted Bax and its mechanism of action remain largely unknown. Here, we propose a 3D model of active Bax at the membrane based on double electron-electron resonance (DEER) spectroscopy in liposomes and isolated mitochondria. We show that active Bax is organized at the membrane as assemblies of dimers. In addition to a stable dimerization domain, each monomer contains a more flexible piercing domain involved in interdimer interactions and pore formation. The most important structural change during Bax activation is the opening of the hairpin formed by helices 5 and 6, which adopts a clamp-like conformation central to the mechanism of mitochondrial permeabilization.
Journal of Biological Chemistry | 2013
Stephanie Bleicken; Olatz Landeta; Ane Landajuela; Gorka Basañez; Ana J. García-Sáez
Background: During apoptosis Bax/Bak release differently sized proteins out of the mitochondria. Results: The size of Bax/Bak pores depends on protein concentration. Conclusion: Bax/Bak form stable toroidal pores tunable in size. Significance: Pore size-tuning constitutes a new level for the regulation of Bax/Bak activity. The Bcl-2 proapoptotic proteins Bax and Bak mediate the permeabilization of the mitochondrial outer membrane during apoptosis. Current models consider that Bax and Bak form pores at the mitochondrial outer membrane that are responsible for the release of cytochrome c and other larger mitochondrial apoptotic factors (i.e. Smac/DIABLO, AIF, and endoglycosidase G). However, the properties and nature of Bax/Bak apoptotic pores remain enigmatic. Here, we performed a detailed analysis of the membrane permeabilizing activity of Bax and Bak at the single vesicle level. We directly visualized that cBid-activated Bax and BakΔC21 can form membrane pores large enough to release not only cytochrome c, but also allophycocyanine, a protein of 104 kDa. Interestingly, the size of Bax and BakΔC21 pores is not constant, as typically observed in purely proteinaceous channels, but evolves with time and depends on protein concentration. We found that Bax and BakΔC21 formed long-lived pores, whose areas changed with the amount of Bax/BakΔC21 but not with cardiolipin concentration. Altogether, our results demonstrate that Bax and BakΔC21 follow similar mechanisms of membrane permeabilization characterized by the formation of protein-permeable pores of dynamic size, in agreement with the proteolipidic nature of these apoptotic pores.
Nature Communications | 2015
Yamunadevi Subburaj; Markus Axmann; Esteban Pedrueza-Villalmanzo; Eduard Hermann; Stephanie Bleicken; Joachim P. Spatz; Ana J. García-Sáez
Bax is a key regulator of apoptosis that mediates the release of cytochrome c to the cytosol via oligomerization in the outer mitochondrial membrane before pore formation. However, the molecular mechanism of Bax assembly and regulation by other Bcl-2 members remains obscure. Here, by analysing the stoichiometry of Bax oligomers at the single-molecule level, we find that Bax binds to the membrane in a monomeric state and then self-assembles in <1 min. Strikingly, active Bax does not exist in a unique oligomeric state, but as several different species based on dimer units. Moreover, we show that cBid activates Bax without affecting its assembly, while Bcl-xL induces the dissociation of Bax oligomers. On the basis of our experimental data and theoretical modelling, we propose a new mechanism for the molecular pathway of Bax assembly to form the apoptotic pore.
Journal of Biological Chemistry | 2012
Julia P. Steringer; Stephanie Bleicken; Helena Andreas; Sonja Zacherl; M. Laussmann; K. Temmerman; F. X. Contreras; T. A. Bharat; Johannes Lechner; Hans-Michael Müller; J. A. Briggs; Ana J. García-Sáez; Walter Nickel
Background: PI(4,5)P2- and tyrosine phosphorylation-dependent unconventional secretion of FGF2 is mediated by direct translocation across the plasma membrane. Results: PI(4,5)P2-mediated membrane recruitment causes oligomerization of tyrosine-phosphorylated FGF2 that, in turn, triggers the formation of a lipidic membrane pore. Conclusion: Membrane-inserted FGF2 oligomers represent intermediates of membrane translocation during unconventional secretion. Significance: Mechanistic insight into a novel self-sustained mechanism of protein translocation across membranes is provided. Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate.
Biophysical Journal | 2013
Stephanie Bleicken; Corinna Wagner; Ana J. García-Sáez
Based on their membrane-permeabilizing activity in vitro, it has been proposed that Bax-like proteins induce cytochrome c release during apoptosis via pore formation. However, antiapoptotic Bcl-2 proteins, which inhibit cytochrome c release, also display pore activity in model membranes. As a consequence, a unified description that aligns the pore activity of the Bcl-2 proteins with their apoptotic function is missing. Here, we studied the mechanism of membrane binding, oligomerization, and permeabilization by pro- and antiapoptotic Bcl-2 members at the single-vesicle level. We found that proapoptotic Bax forms large, stable pores via an all-or-none mechanism that can release cytochrome c. In contrast, antiapoptotic Bcl-xL induces transient permeability alterations in pure lipid membranes that have no consequences for the mitochondrial outer membrane but inhibit Bax membrane insertion. These differences in pore activity correlate with a distinct oligomeric state of Bax and Bcl-xL in membranes and can be reproduced in isolated mitochondria. Based on our findings, we propose new models for the mechanisms of action of Bax and Bcl-xL that relate their membrane activity to their opposing roles in apoptosis and beyond.
Bioinformatics | 2014
Eduard Hermann; Stephanie Bleicken; Yamunadevi Subburaj; Ana J. García-Sáez
MOTIVATION In order to obtain statistically relevant results, the study of membrane effects at the single-vesicle level requires the analysis of several hundreds of giant unilamellar vesicles (GUVs), which becomes a very time-consuming task if carried out manually. Complete and user-friendly software for fast and bias-free automated analysis has not been reported yet. RESULTS We developed a framework for the automated detection, tracking and analysis of individual GUVs on digital microscopy images. Our tool is suited to quantify protein binding to membranes as well as several aspects of membrane permeabilization on single vesicles. We demonstrate the applicability of the approach by comparing alternative activation methods for Bax, a pore-forming protein involved in mitochondrial permeabilization during apoptosis. AVAILABILITY AND IMPLEMENTATION The complete software is implemented in MATLAB (The MathWorks, Inc., USA) and available as a standalone as well as the full source code at http://www.ifib.uni-tuebingen.de/research/garcia-saez/guv-software.html.
Journal of Biological Chemistry | 2015
Hans-Michael Müller; Julia P. Steringer; Sabine Wegehingel; Stephanie Bleicken; Maximilian Münster; Eleni Dimou; Sebastian Unger; Georg Weidmann; Helena Andreas; Ana J. García-Sáez; Klemens Wild; Irmgard Sinning; Walter Nickel
Background: FGF2 translocation across plasma membranes depends on phosphoinositide-dependent oligomerization and membrane pore formation. Results: Two unique surface cysteines are critical for efficient FGF2 oligomerization, membrane pore formation, and FGF2 secretion from cells. Conclusion: Formation of intermolecular disulfide bridges drives phosphoinositide-dependent FGF2 oligomerization at plasma membranes. Significance: A new cis element critical for unconventional secretion of FGF2 was identified and validated. Fibroblast growth factor 2 (FGF2) is a key signaling molecule in tumor-induced angiogenesis. FGF2 is secreted by an unconventional secretory mechanism that involves phosphatidylinositol 4,5-bisphosphate-dependent insertion of FGF2 oligomers into the plasma membrane. This process is regulated by Tec kinase-mediated tyrosine phosphorylation of FGF2. Molecular interactions driving FGF2 monomers into membrane-inserted FGF2 oligomers are unknown. Here we identify two surface cysteines that are critical for efficient unconventional secretion of FGF2. They represent unique features of FGF2 as they are absent from all signal-peptide-containing members of the FGF protein family. We show that phosphatidylinositol 4,5-bisphosphate-dependent FGF2 oligomerization concomitant with the generation of membrane pores depends on FGF2 surface cysteines as either chemical alkylation or substitution with alanines impairs these processes. We further demonstrate that the FGF2 variant forms lacking the two surface cysteines are not secreted from cells. These findings were corroborated by experiments redirecting a signal-peptide-containing FGF family member from the endoplasmic reticulum/Golgi-dependent secretory pathway into the unconventional secretory pathway of FGF2. Cis elements known to be required for unconventional secretion of FGF2, including the two surface cysteines, were transplanted into a variant form of FGF4 without signal peptide. The resulting FGF4/2 hybrid protein was secreted by unconventional means. We propose that the formation of disulfide bridges drives membrane insertion of FGF2 oligomers as intermediates in unconventional secretion of FGF2.
FEBS Journal | 2017
Yuniel Fernández-Marrero; Stephanie Bleicken; Kushal Kumar Das; Thomas Kaufmann; Ana J. García-Sáez
The BCL‐2 family members are key regulators of the intrinsic apoptotic pathway, which is defined by permeabilization of the mitochondrial outer membrane by members of the BAX‐like subfamily. BOK is classified as a BAX‐like protein; however, its (patho‐)physiological role remains largely unclear. We therefore assessed the membrane permeabilization potential of C‐terminally truncated recombinant BOK, BOK∆C. We show that BOK∆C can permeabilize liposomes mimicking the composition of mitochondrial outer membrane, but not of endoplasmic reticulum, forming large and stable pores over time. Importantly, pore formation was enhanced by the presence of cBID and refractory to the addition of antiapoptotic BCL‐XL. However, isolated mitochondria from Bax−/−Bak−/− cells were resistant to BOK‐induced cytochrome c release, even in the presence of cBID. Taken together, we show that BOK∆C can permeabilize liposomes, and cooperate with cBID, but its role in directly mediating mitochondrial permeabilization is unclear and may underlie a yet to be determined negative regulation.
Cell Death and Disease | 2016
Stephanie Bleicken; Götz Hofhaus; Begoña Ugarte-Uribe; Rasmus R. Schröder; Ana J. García-Sáez
The proteins of the Bcl-2 family have a crucial role in mitochondrial outer membrane permeabilization during apoptosis and in the regulation of mitochondrial dynamics. Current models consider that Bax forms toroidal pores at mitochondria that are responsible for the release of cytochrome c, whereas Bcl-xL inhibits pore formation. However, how Bcl-2 proteins regulate mitochondrial fission and fusion remains poorly understood. By using a systematic analysis at the single vesicle level, we found that cBid, Bax and Bcl-xL are able to remodel membranes in different ways. cBid and Bax induced a reduction in vesicle size likely related to membrane tethering, budding and fission, besides membrane permeabilization. Moreover, they are preferentially located at highly curved membranes. In contrast, Bcl-xL not only counterbalanced pore formation but also membrane budding and fission. Our findings support a mechanism of action by which cBid and Bax induce or stabilize highly curved membranes including non-lamellar structures. This molecular activity reduces the energy for membrane remodeling, which is a necessary step in toroidal pore formation, as well as membrane fission and fusion, and provides a common mechanism that links the two main functions of Bcl-2 proteins.