Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie C. Huelga is active.

Publication


Featured researches published by Stephanie C. Huelga.


Nature Neuroscience | 2011

Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43

Magdalini Polymenidou; Clotilde Lagier-Tourenne; Kasey R. Hutt; Stephanie C. Huelga; Jacqueline Moran; Tiffany Y. Liang; Shuo-Chien Ling; Eveline Sun; Edward Wancewicz; Curt Mazur; Holly Kordasiewicz; Yalda Sedaghat; John Paul Donohue; Lily Shiue; C. Frank Bennett; Gene W. Yeo; Don W. Cleveland

We used cross-linking and immunoprecipitation coupled with high-throughput sequencing to identify binding sites in 6,304 genes as the brain RNA targets for TDP-43, an RNA binding protein that, when mutated, causes amyotrophic lateral sclerosis. Massively parallel sequencing and splicing-sensitive junction arrays revealed that levels of 601 mRNAs were changed (including Fus (Tls), progranulin and other transcripts encoding neurodegenerative disease–associated proteins) and 965 altered splicing events were detected (including in sortilin, the receptor for progranulin) following depletion of TDP-43 from mouse adult brain with antisense oligonucleotides. RNAs whose levels were most depleted by reduction in TDP-43 were derived from genes with very long introns and that encode proteins involved in synaptic activity. Lastly, we found that TDP-43 autoregulates its synthesis, in part by directly binding and enhancing splicing of an intron in the 3′ untranslated region of its own transcript, thereby triggering nonsense-mediated RNA degradation.


Nature Neuroscience | 2012

Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs

Clotilde Lagier-Tourenne; Magdalini Polymenidou; Kasey R. Hutt; Anthony Q. Vu; Michael Baughn; Stephanie C. Huelga; Kevin M. Clutario; Shuo-Chien Ling; Tiffany Y. Liang; Curt Mazur; Edward Wancewicz; Aneeza S. Kim; Andy Watt; Sue Freier; Geoffrey G. Hicks; John Paul Donohue; Lily Shiue; C. Frank Bennett; John Ravits; Don W. Cleveland; Gene W. Yeo

FUS/TLS (fused in sarcoma/translocated in liposarcoma) and TDP-43 are integrally involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. We found that FUS/TLS binds to RNAs from >5,500 genes in mouse and human brain, primarily through a GUGGU-binding motif. We identified a sawtooth-like binding pattern, consistent with co-transcriptional deposition of FUS/TLS. Depletion of FUS/TLS from the adult nervous system altered the levels or splicing of >950 mRNAs, most of which are distinct from RNAs dependent on TDP-43. Abundance of only 45 RNAs was reduced after depletion of either TDP-43 or FUS/TLS from mouse brain, but among these were mRNAs that were transcribed from genes with exceptionally long introns and that encode proteins that are essential for neuronal integrity. Expression levels of a subset of these were lowered after TDP-43 or FUS/TLS depletion in stem cell–derived human neurons and in TDP-43 aggregate–containing motor neurons in sporadic ALS, supporting a common loss-of-function pathway as one component underlying motor neuron death from misregulation of TDP-43 or FUS/TLS.


Proceedings of the National Academy of Sciences of the United States of America | 2013

ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43

Eveline S. Arnold; Shuo-Chien Ling; Stephanie C. Huelga; Clotilde Lagier-Tourenne; Magdalini Polymenidou; Dara Ditsworth; Holly Kordasiewicz; Melissa McAlonis-Downes; Oleksandr Platoshyn; Philippe A. Parone; Sandrine Da Cruz; Kevin M. Clutario; Debbie Swing; Lino Tessarollo; Martin Marsala; Christopher Shaw; Gene W. Yeo; Don W. Cleveland

Significance Mutations in the RNA binding protein TDP-43 cause amyotrophic lateral sclerosis and frontotemporal dementia. Through expressing disease-causing mutants in mice and genome-wide RNA splicing analyses, mutant TDP-43 is shown to retain normal or enhanced activity for facilitating splicing of some RNA targets, but “loss-of-function” for others. These splicing changes, as well as age-dependent, mutant-dependent lower motor neuron disease, occur without loss of nuclear TDP-43 or accumulation of insoluble aggregates of TDP-43. Transactivating response region DNA binding protein (TDP-43) is the major protein component of ubiquitinated inclusions found in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) with ubiquitinated inclusions. Two ALS-causing mutants (TDP-43Q331K and TDP-43M337V), but not wild-type human TDP-43, are shown here to provoke age-dependent, mutant-dependent, progressive motor axon degeneration and motor neuron death when expressed in mice at levels and in a cell type-selective pattern similar to endogenous TDP-43. Mutant TDP-43-dependent degeneration of lower motor neurons occurs without: (i) loss of TDP-43 from the corresponding nuclei, (ii) accumulation of TDP-43 aggregates, and (iii) accumulation of insoluble TDP-43. Computational analysis using splicing-sensitive microarrays demonstrates alterations of endogenous TDP-43–dependent alternative splicing events conferred by both human wild-type and mutant TDP-43Q331K, but with high levels of mutant TDP-43 preferentially enhancing exon exclusion of some target pre-mRNAs affecting genes involved in neurological transmission and function. Comparison with splicing alterations following TDP-43 depletion demonstrates that TDP-43Q331K enhances normal TDP-43 splicing function for some RNA targets but loss-of-function for others. Thus, adult-onset motor neuron disease does not require aggregation or loss of nuclear TDP-43, with ALS-linked mutants producing loss and gain of splicing function of selected RNA targets at an early disease stage.


Molecular Cell | 2012

LIN28 Binds Messenger RNAs at GGAGA Motifs and Regulates Splicing Factor Abundance

Melissa L. Wilbert; Stephanie C. Huelga; Katannya Kapeli; Thomas J. Stark; Tiffany Y. Liang; Stella Chen; Bernice Y. Yan; Jason L. Nathanson; Kasey R. Hutt; Michael Lovci; Hilal Kazan; Anthony Q. Vu; Katlin B. Massirer; Quaid Morris; Shawn Hoon; Gene W. Yeo

LIN28 is a conserved RNA-binding protein implicated in pluripotency, reprogramming, and oncogenesis. It was previously shown to act primarily by blocking let-7 microRNA (miRNA) biogenesis, but here we elucidate distinct roles of LIN28 regulation via its direct messenger RNA (mRNA) targets. Through crosslinking and immunoprecipitation coupled with high-throughput sequencing (CLIP-seq) in human embryonic stem cells and somatic cells expressing exogenous LIN28, we have defined discrete LIN28-binding sites in a quarter of human transcripts. These sites revealed that LIN28 binds to GGAGA sequences enriched within loop structures in mRNAs, reminiscent of its interaction with let-7 miRNA precursors. Among LIN28 mRNA targets, we found evidence for LIN28 autoregulation and also direct but differing effects on the protein abundance of splicing regulators in somatic and pluripotent stem cells. Splicing-sensitive microarrays demonstrated that exogenous LIN28 expression causes widespread downstream alternative splicing changes. These findings identify important regulatory functions of LIN28 via direct mRNA interactions.


Neuron | 2016

Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System

Fernando Martinez; Gabriel A. Pratt; Eric L. Van Nostrand; Ranjan Batra; Stephanie C. Huelga; Katannya Kapeli; Peter Freese; Seung Chun; Karen Ling; Chelsea Gelboin-Burkhart; Layla Fijany; Harrison Wang; Julia K. Nussbacher; Sara M. Broski; Hong Joo Kim; Rea M Lardelli; Balaji Sundararaman; John Paul Donohue; Ashkan Javaherian; Jens Lykke-Andersen; Steven Finkbeiner; C. Frank Bennett; Manuel Ares; Christopher B. Burge; J. Paul Taylor; Frank Rigo; Gene W. Yeo

HnRNPA2B1 encodes an RNA binding protein associated with neurodegeneration. However, its function in the nervous system is unclear. Transcriptome-wide crosslinking and immunoprecipitation in mouse spinal cord discover UAGG motifs enriched within ∼2,500 hnRNP A2/B1 binding sites and an unexpected role for hnRNP A2/B1 in alternative polyadenylation. HnRNP A2/B1 loss results in alternative splicing (AS), including skipping of an exon in amyotrophic lateral sclerosis (ALS)-associated D-amino acid oxidase (DAO) that reduces D-serine metabolism. ALS-associated hnRNP A2/B1 D290V mutant patient fibroblasts and motor neurons differentiated from induced pluripotent stem cells (iPSC-MNs) demonstrate abnormal splicing changes, likely due to increased nuclear-insoluble hnRNP A2/B1. Mutant iPSC-MNs display decreased survival in long-term culture and exhibit hnRNP A2/B1 localization to cytoplasmic granules as well as exacerbated changes in gene expression and splicing upon cellular stress. Our findings provide a cellular resource and reveal RNA networks relevant to neurodegeneration, regulated by normal and mutant hnRNP A2/B1. VIDEO ABSTRACT.


Molecular Cell | 2016

Resources for the Comprehensive Discovery of Functional RNA Elements

Balaji Sundararaman; Lijun Zhan; Steven M. Blue; Rebecca Stanton; Keri Elkins; Sara Olson; Xintao Wei; Eric L. Van Nostrand; Gabriel A. Pratt; Stephanie C. Huelga; Brendan M. Smalec; Xiaofeng Wang; Eurie L. Hong; Jean M. Davidson; Eric Lécuyer; Brenton R. Graveley; Gene W. Yeo

Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell lines, tissues, and developmental stages is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology, and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).


Nature Structural & Molecular Biology | 2016

RNA-binding protein CPEB1 remodels host and viral RNA landscapes

Ranjan Batra; Thomas J. Stark; Elizabeth Clark; Jean-Philippe Belzile; Emily C. Wheeler; Brian A Yee; Hui Huang; Chelsea Gelboin-Burkhart; Stephanie C. Huelga; Stefan Aigner; Brett T Roberts; Tomas J. Bos; Shashank Sathe; John Paul Donohue; Frank Rigo; Manuel Ares; Deborah H. Spector; Gene W. Yeo

Host and virus interactions occurring at the post-transcriptional level are critical for infection but remain poorly understood. Here, we performed comprehensive transcriptome-wide analyses revealing that human cytomegalovirus (HCMV) infection results in widespread alternative splicing (AS), shortening of 3′ untranslated regions (3′ UTRs) and lengthening of poly(A)-tails in host gene transcripts. We found that the host RNA-binding protein CPEB1 was highly induced after infection, and ectopic expression of CPEB1 in noninfected cells recapitulated infection-related post-transcriptional changes. CPEB1 was also required for poly(A)-tail lengthening of viral RNAs important for productive infection. Strikingly, depletion of CPEB1 reversed infection-related cytopathology and post-transcriptional changes, and decreased productive HCMV titers. Host RNA processing was also altered in herpes simplex virus-2 (HSV-2)-infected cells, thereby indicating that this phenomenon might be a common occurrence during herpesvirus infections. We anticipate that our work may serve as a starting point for therapeutic targeting of host RNA-binding proteins in herpesvirus infections.


Cell Reports | 2012

Integrative Genome-wide Analysis Reveals Cooperative Regulation of Alternative Splicing by hnRNP Proteins

Stephanie C. Huelga; Anthony Q. Vu; Justin D. Arnold; Tiffany Y. Liang; Patrick P. Liu; Bernice Y. Yan; John Paul Donohue; Lily Shiue; Shawn Hoon; Sydney Brenner; Manuel Ares; Gene W. Yeo


Molecular Cell | 2016

SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.

Kristopher W. Brannan; Wenhao Jin; Stephanie C. Huelga; Charles A. S. Banks; Joshua M. Gilmore; Laurence Florens; Michael P. Washburn; Eric L. Van Nostrand; Gabriel A. Pratt; Marie K. Schwinn; Danette L. Daniels; Gene W. Yeo


Nature | 2016

Distinct and shared functions of ALS-associated proteins TDP-43, FUS and TAF15 revealed by multisystem analyses

Katannya Kapeli; Gabriel A. Pratt; Anthony Q. Vu; Kasey R. Hutt; Fernando Martinez; Balaji Sundararaman; Ranjan Batra; Stephanie C. Huelga; Seung Chun; Tiffany Y. Liang; Jeremy Chang; John Paul Donohue; Lily Shiue; Jiayu Zhang; Haining Zhu; Franca Cambi; Edward J. Kasarskis; Shawn Hoon; Manuel Ares; John Ravits; Frank Rigo; Gene W. Yeo; Peter Freese; Nicole J. Lambert; Christopher B. Burge

Collaboration


Dive into the Stephanie C. Huelga's collaboration.

Top Co-Authors

Avatar

Gene W. Yeo

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony Q. Vu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kasey R. Hutt

University of California

View shared research outputs
Top Co-Authors

Avatar

Lily Shiue

University of California

View shared research outputs
Top Co-Authors

Avatar

Manuel Ares

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge