Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie C. Tucker is active.

Publication


Featured researches published by Stephanie C. Tucker.


Journal of Biological Chemistry | 2011

Identification of the Orphan G Protein-coupled Receptor GPR31 as a Receptor for 12-(S)-Hydroxyeicosatetraenoic Acid

Yande Guo; Wenliang Zhang; Craig N. Giroux; Yinlong Cai; Prasanna Ekambaram; Ashok Kumar Dilly; Andrew Hsu; Senlin Zhou; Krishna Rao Maddipati; Jingjing Liu; Sangeeta Joshi; Stephanie C. Tucker; Menq Jer Lee; Kenneth V. Honn

Hydroxy fatty acids are critical lipid mediators involved in various pathophysiologic functions. We cloned and identified GPR31, a plasma membrane orphan G protein-coupled receptor that displays high affinity for the human 12-lipoxygenase-derived product 12-(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE). Thus, GPR31 is named 12-(S)-HETE receptor (12-HETER) in this study. The cloned 12-HETER demonstrated high affinity binding for 12-(S)-[3H]HETE (Kd = 4.8 ± 0.12 nm). Also, 12-(S)-HETE efficiently and selectively stimulated GTPγS coupling in the membranes of 12-HETER-transfected cells (EC50 = 0.28 ± 1.26 nm). Activating GTPγS coupling with 12-(S)-HETE proved to be both regio- and stereospecific. Also, 12-(S)-HETE/12-HETER interactions lead to activation of ERK1/2, MEK, and NFκB. Moreover, knocking down 12-HRTER specifically inhibited 12-(S)-HETE-stimulated cell invasion. Thus, 12-HETER represents the first identified high affinity receptor for the 12-(S)-HETE hydroxyl fatty acids.


Cancer and Metastasis Reviews | 2014

Platelets and cancer: a casual or causal relationship: revisited

David G. Menter; Stephanie C. Tucker; Scott Kopetz; Anil K. Sood; John D. Crissman; Kenneth V. Honn

Human platelets arise as subcellular fragments of megakaryocytes in bone marrow. The physiologic demand, presence of disease such as cancer, or drug effects can regulate the production circulating platelets. Platelet biology is essential to hemostasis, vascular integrity, angiogenesis, inflammation, innate immunity, wound healing, and cancer biology. The most critical biological platelet response is serving as “First Responders” during the wounding process. The exposure of extracellular matrix proteins and intracellular components occurs after wounding. Numerous platelet receptors recognize matrix proteins that trigger platelet activation, adhesion, aggregation, and stabilization. Once activated, platelets change shape and degranulate to release growth factors and bioactive lipids into the blood stream. This cyclic process recruits and aggregates platelets along with thrombogenesis. This process facilitates wound closure or can recognize circulating pathologic bodies. Cancer cell entry into the blood stream triggers platelet-mediated recognition and is amplified by cell surface receptors, cellular products, extracellular factors, and immune cells. In some cases, these interactions suppress immune recognition and elimination of cancer cells or promote arrest at the endothelium, or entrapment in the microvasculature, and survival. This supports survival and spread of cancer cells and the establishment of secondary lesions to serve as important targets for prevention and therapy.


International Journal of Cancer | 2013

Platelet-type 12-lipoxygenase induces MMP9 expression and cellular invasion via activation of PI3K/Akt/NF-κB.

Ashok Kumar Dilly; Prasanna Ekambaram; Yande Guo; Yinlong Cai; Stephanie C. Tucker; Rafael Fridman; Mustapha Kandouz; Kenneth V. Honn

Prostate cancer is the most frequently diagnosed cancer and the second leading cause of death in males in the United States. Using human prostate cancer specimens, the authors have previously shown that elevated expression levels of 12‐lipoxygenase (12‐LOX) occurred more frequently in advanced stage, high‐grade prostate cancer, suggesting that 12‐LOX expression is associated with carcinoma progression and invasion. Previous reports from their group and others have shown that 12‐LOX is a positive modulator of invasion and metastasis; however, the mechanism remains unclear. In this work, a new link between 12‐LOX and the matrix metalloproteinase 9 (MMP9) in prostate cancer angiogenesis is reported. This study demonstrated that overexpression of 12‐LOX in prostate cancer PC‐3 cells resulted in elevated expression of MMP9 mRNA, protein and secretion. Exogenous addition of 12(S)‐hydroxy eicosatetraenoic acid, the sole and stable end product of arachidonic acid metabolism by 12‐LOX, is able to increase MMP9 expression in wild‐type PC‐3 cells. Furthermore, using pharmacological and genetic inhibition approaches, it was found that 12‐LOX activates phosphoinositol 3 kinase (PI3K)/Akt, which results in nuclear factor‐kappa B (NF‐κB)‐driven MMP9 expression, ensuing in enhanced chemoattraction of endothelial cells. Specific inhibitors of 12‐LOX, PI3K or NF‐κB inhibited MMP9 expression in 12‐LOX‐expressing PC‐3 cells and resulted in the blockade of the migratory ability of endothelial cells. In summary, the authors have identified a new pathway by which overexpression of 12‐LOX in prostate cancer cells leads to augmented production of MMP9 via activation of PI3K/Akt/NF‐κB signaling. The role of 12‐LOX‐mediated MMP9 secretion in endothelial cell migration may account for the proangiogenic function of 12‐LOX in prostate cancer.


Experimental Cell Research | 2010

12-Lipoxygenase and the regulation of hypoxia-inducible factor in prostate cancer cells

Sriram Krishnamoorthy; Rongxian Jin; Yinlong Cai; Krishna Rao Maddipati; Daotai Nie; Gilles Pagès; Stephanie C. Tucker; Kenneth V. Honn

12-Lipoxygenase, an arachidonic acid metabolizing enzyme of the lipoxygenase pathway, has been implicated as a major factor in promoting prostate cancer progression and metastasis. The ability of 12-LOX to aggravate the disease was linked to its proangiogenic role. Recent studies clearly demonstrated that 12-LOX enhances the expression and secretion of the angiogenic factor, vascular endothelial growth factor (VEGF) thus providing a direct link between this enzyme and its angiogenic properties. In the present study we have investigated the relationship between 12-LOX and hypoxia inducible factor-1alpha (HIF-1alpha), a transcription factor involved in the regulation of VEGF expression under hypoxic conditions in solid tumors. Our findings have revealed that HIF-1 is one of the target transcription factors regulated by 12-LOX and 12(S)-HETE, in hypoxic tumor cells of the prostate. Regulation of HIF-1alpha by 12-LOX adds to the complexity of pathways mediated by this enzyme in promoting prostate cancer angiogenesis and metastasis. We have evidence that 12-LOX increases the protein level, mRNA, and functional activity of HIF-1alpha under hypoxic conditions, one of the mechanisms by which it upregulates VEGF secretion and activity.


Cancer and Metastasis Reviews | 2014

Emerging technology: applications of Raman spectroscopy for prostate cancer.

Rachel E. Kast; Stephanie C. Tucker; Kevin Killian; Micaela Trexler; Kenneth V. Honn; Gregory W. Auner

There is a need in prostate cancer diagnostics and research for a label-free imaging methodology that is nondestructive, rapid, objective, and uninfluenced by water. Raman spectroscopy provides a molecular signature, which can be scaled from micron-level regions of interest in cells to macroscopic areas of tissue. It can be used for applications ranging from in vivo or in vitro diagnostics to basic science laboratory testing. This work describes the fundamentals of Raman spectroscopy and complementary techniques including surface enhanced Raman scattering, resonance Raman spectroscopy, coherent anti-Stokes Raman spectroscopy, confocal Raman spectroscopy, stimulated Raman scattering, and spatially offset Raman spectroscopy. Clinical applications of Raman spectroscopy to prostate cancer will be discussed, including screening, biopsy, margin assessment, and monitoring of treatment efficacy. Laboratory applications including cell identification, culture monitoring, therapeutics development, and live imaging of cellular processes are discussed. Potential future avenues of research are described, with emphasis on multiplexing Raman spectroscopy with other modalities.


Cancer and Metastasis Reviews | 2015

Protease-activated receptors (PARs)—biology and role in cancer invasion and metastasis

Marek Z. Wojtukiewicz; Dominika Hempel; Ewa Sierko; Stephanie C. Tucker; Kenneth V. Honn

Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.


Cancer and Metastasis Reviews | 2016

Thrombin—unique coagulation system protein with multifaceted impacts on cancer and metastasis

Marek Z. Wojtukiewicz; Dominika Hempel; Ewa Sierko; Stephanie C. Tucker; Kenneth V. Honn

The association between blood coagulation and cancer development is well recognized. Thrombin, the pleiotropic enzyme best known for its contribution to fibrin formation and platelet aggregation during vascular hemostasis, may also trigger cellular events through protease-activated receptors, PAR-1 and PAR-4, leading to cancer progression. Our pioneering findings provided evidence that thrombin contributes to cancer metastasis by increasing adhesive potential of malignant cells. However, there is evidence that thrombin regulates every step of cancer dissemination: (1) cancer cell invasion, detachment from primary tumor, migration; (2) entering the blood vessel; (3) surviving in vasculature; (4) extravasation; (5) implantation in host organs. Recent studies have provided new molecular data about thrombin generation in cancer patients and the mechanisms by which thrombin contributes to transendothelial migration, platelet/tumor cell interactions, angiogenesis, and other processes. Though a great deal is known regarding the role of thrombin in cancer dissemination, there are new data for multiple thrombin-mediated events that justify devoting focus to this topic with a comprehensive approach.


Molecular Cancer | 2015

Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner.

Keqin Tang; Yinlong Cai; Sangeeta Joshi; Elizabeth Tovar; Stephanie C. Tucker; Krishna Rao Maddipati; John D. Crissman; William T. Repaskey; Kenneth V. Honn

BackgroundIntegrins and enzymes of the eicosanoid pathway are both well-established contributors to cancer. However, this is the first report of the interdependence of the two signaling systems. In a screen for proteins that interacted with, and thereby potentially regulated, the human platelet-type 12-lipoxygenase (12-LOX, ALOX12), we identified the integrin β4 (ITGB4).MethodsUsing a cultured mammalian cell model, we have demonstrated that ITGB4 stimulation leads to recruitment of 12-LOX from the cytosol to the membrane where it physically interacts with the integrin to become enzymatically active to produce 12(S)-HETE, a known bioactive lipid metabolite that regulates numerous cancer phenotypes.ResultsThe net effect of the interaction was the prevention of cell death in response to starvation. Additionally, regulation of β4-mediated, EGF-stimulated invasion was shown to be dependent on 12-LOX, and downstream Erk signaling in response to ITGB4 activation also required 12-LOX.ConclusionsThis is the first report of an enzyme of the eicosanoid pathway being recruited to and regulated by activated β4 integrin. Integrin β4 has recently been shown to induce expansion of prostate tumor progenitors and there is a strong correlation between stage/grade of prostate cancer and 12-LOX expression. The 12-LOX enzymatic product, 12(S)-HETE, regulates angiogenesis and cell migration in many cancer types. Therefore, disruption of integrin β4-12LOX interaction could reduce the pro-inflammatory oncogenic activity of 12-LOX. This report on the consequences of 12-LOX and ITGB4 interaction sets a precedent for the linkage of integrin and eicosanoid biology through direct protein-protein association.


Cancer and Metastasis Reviews | 2017

Platelets and cancer angiogenesis nexus

Marek Z. Wojtukiewicz; Ewa Sierko; Dominika Hempel; Stephanie C. Tucker; Kenneth V. Honn

There has been remarkable insight into the importance of platelets in a wide range of pathophysiologic events, including inflammation and cancer progression. Thrombocytosis in cancer patients is a common finding. Tumor cells induce platelet activation and subsequent aggregation through direct and indirect mechanisms. Platelets are recognized to contribute to metastatic dissemination. There is plenty of evidence that components of the hemostatic system contribute to the process of angiogenesis. Furthermore, there are accumulated data on the substantial influence of blood platelets in the process of blood vessel formation during malignancy. Platelets appear to be the main physiologic transporters of proangiogenic and antiangiogenic factors. Moreover, they influence the process of angiogenesis through platelet-derived microparticles, microRNA, lipids, and variety of surface receptors. Platelets contribute to early and late stages of angiogenesis. Available data support the overall stimulatory effect of platelets on tumor angiogenesis. It raises the possibility that interfering with platelet function may be an effective antineoplastic treatment strategy.


Cancer and Metastasis Reviews | 2017

Antiplatelet agents for cancer treatment: a real perspective or just an echo from the past?

Marek Z. Wojtukiewicz; Dominika Hempel; Ewa Sierko; Stephanie C. Tucker; Kenneth V. Honn

The association between coagulation and cancer development has been observed for centuries. However, the connection between inflammation and malignancy is also well-recognized. The plethora of evidence indicates that among multiple hemostasis components, platelets play major roles in cancer progression by providing surface and granular contents for several interactions as well as behaving like immune cells. Therefore, the anticancer potential of anti-platelet therapy has been intensively investigated for many years. Anti-platelet agents may prevent cancer, decrease tumor growth, and metastatic potential, as well as improve survival of cancer patients. On the other hand, there are suggestions that antiplatelet treatment may promote solid tumor development in a phenomenon described as “cancers follow bleeding.” The controversies around antiplatelet agents justify insight into the subject to establish what, if any, role platelet-directed therapy has in the continuum of anticancer management.

Collaboration


Dive into the Stephanie C. Tucker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yinlong Cai

Wayne State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yande Guo

Wayne State University

View shared research outputs
Top Co-Authors

Avatar

Dominika Hempel

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Ewa Sierko

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Marek Z. Wojtukiewicz

Medical University of Białystok

View shared research outputs
Researchain Logo
Decentralizing Knowledge