Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Cherqui is active.

Publication


Featured researches published by Stephanie Cherqui.


The EMBO Journal | 2001

Cystinosin, the protein defective in cystinosis, is a H+‐driven lysosomal cystine transporter

Vasiliki Kalatzis; Stephanie Cherqui; Corinne Antignac; Bruno Gasnier

Cystinosis is an inherited lysosomal storage disease characterized by defective transport of cystine out of lysosomes. However, the causative gene, CTNS, encodes a seven transmembrane domain lysosomal protein, cystinosin, unrelated to known transporters. To investigate the molecular function of cystinosin, the protein was redirected from lysosomes to the plasma membrane by deletion of its C‐terminal GYDQL sorting motif (cystinosin‐ΔGYDQL), thereby exposing the intralysosomal side of cystinosin to the extracellular medium. COS cells expressing cystinosin‐ΔGYDQL selectively take up L‐cystine from the extracellular medium at acidic pH. Disruption of the transmembrane pH gradient or incubation of the cells at neutral pH strongly inhibits the uptake. Cystinosin‐ΔGYDQL is directly involved in the observed cystine transport, since this activity is highly reduced when the GYDQL motif is restored and is abolished upon introduction of a point mutation inducing early‐onset cystinosis. We conclude that cystinosin represents a novel H+‐driven transporter that is responsible for cystine export from lysosomes, and propose that cystinosin homologues, such as mammalian SL15/Lec35 and Saccharomyces cerevisiae ERS1, may perform similar transport processes at other cellular membranes.


Molecular and Cellular Biology | 2002

Intralysosomal cystine accumulation in mice lacking cystinosin, the protein defective in cystinosis.

Stephanie Cherqui; Caroline Sevin; Ghislaine Hamard; Vasiliki Kalatzis; Mireille Sich; Marie O. Pequignot; Karïn Gogat; Marc Abitbol; Michel Broyer; Marie-Claire Gubler; Corinne Antignac

ABSTRACT Cystinosis is an autosomal recessive disorder characterized by an accumulation of intralysosomal cystine. The causative gene, CTNS, encodes cystinosin, a seven-transmembrane-domain protein, which we recently showed to be a lysosomal cystine transporter. The most severe and frequent form of cystinosis, the infantile form, appears around 6 to 12 months, with a proximal tubulopathy (de Toni-Debré-Fanconi syndrome) and ocular damage. End-stage renal failure is reached by 10 years of age. Accumulation of cystine in all tissues eventually leads to multisystemic disease. Treatment with cysteamine, which reduces the concentration of intracellular cystine, delays disease progression but has undesirable side effects. We report the first Ctns knockout mouse model generated using a promoter trap approach. We replaced the last four Ctns exons by an internal ribosome entry site-βgal-neo cassette and showed that the truncated protein was mislocalized and nonfunctional. Ctns −/− mice accumulated cystine in all organs tested, and cystine crystals, pathognomonic of cystinosis, were observed. Ctns −/− mice developed ocular changes similar to those observed in affected individuals, bone defects and behavioral anomalies. Interestingly, Ctns −/− mice did not develop signs of a proximal tubulopathy, or renal failure. A preliminary therapeutic trial using an oral administration of cysteamine was carried out and demonstrated the efficiency of this treatment for cystine clearance in Ctns −/− mice. This animal model will prove an invaluable and unique tool for testing emerging therapeutics for cystinosis.


American Journal of Human Genetics | 1999

Molecular characterization of CTNS deletions in nephropathic cystinosis: development of a PCR-based detection assay.

Lionel Forestier; Geneviève Jean; Marlene Attard; Stephanie Cherqui; Cathryn M. Lewis; William van’t Hoff; Michel Broyer; Margaret Town; Corinne Antignac

Nephropathic cystinosis is an autosomal recessive disorder that is characterized by accumulation of intralysosomal cystine and is caused by a defect in the transport of cystine across the lysosomal membrane. Using a positional cloning strategy, we recently cloned the causative gene, CTNS, and identified pathogenic mutations, including deletions, that span the cystinosis locus. Two types of deletions were detected-one of 9.5-16 kb, which was seen in a single family, and one of approximately 65 kb, which is the most frequent mutation found in the homozygous state in nearly one-third of cystinotic individuals. We present here characterization of the deletion breakpoints and demonstrate that, although both deletions occur in regions of repetitive sequences, they are the result of nonhomologous recombination. This type of mechanism suggests that the approximately 65-kb deletion is not a recurrent mutation, and our results confirm that it is identical in all patients. Haplotype analysis shows that this large deletion is due to a founder effect that occurred in a white individual and that probably arose in the middle of the first millenium. We also describe a rapid PCR-based assay that will accurately detect both homozygous and heterozygous deletions, and we use it to show that the approximately 65-kb deletion is present in either the homozygous or the heterozygous state in 76% of cystinotic patients of European origin.


Blood | 2009

Successful treatment of the murine model of cystinosis using bone marrow cell transplantation

Kimberly Syres; Frank Harrison; Matthew Tadlock; James V. Jester; Jennifer Simpson; Subhojit Roy; Daniel R. Salomon; Stephanie Cherqui

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in every organ in the body and leads to organ damage and dysfunction, including renal defects. Using the murine model for cystinosis, Ctns(-/-) mice, we performed syngeneic bone marrow cell (BMC), hematopoietic stem cell (HSC), and mesenchymal stem cell transplantation. Organ-specific cystine content was reduced by 57% to 94% in all organs tested in the BMC-treated mice. Confocal microscopy and quantitative polymerase chain reaction revealed a large quantity of transplanted BMC in all organs tested, from 5% to 19% of the total cells. Most of these cells were not from the lymphoid lineage but part of the intrinsic structure of the organ. The natural progression of renal dysfunction was prevented, and deposition of corneal cystine crystals was significantly improved in the BMC-treated mice. HSC had the same therapeutic effect as whole BMC. In contrast, mesenchymal stem cell did not integrate efficiently in any organ. This work is a proof of concept for using HSC transplantation as a therapy for cystinosis and highlights the efficiency of this strategy for a chronic, progressive degenerative disease.


Journal of Virology | 2006

Mice Transgenic for a Human Porcine Endogenous Retrovirus Receptor Are Susceptible to Productive Viral Infection

Yuri Martina; Katherine T. Marcucci; Stephanie Cherqui; A. Szabo; T. Drysdale; U. Srinivisan; Carolyn A. Wilson; Clive Patience; Daniel R. Salomon

ABSTRACT Porcine endogenous retrovirus (PERV) is considered one of the major risks in xenotransplantation. No valid animal model has been established to evaluate the risks associated with PERV transmission to human patients by pig tissue xenotransplantation or to study the potential pathogenesis associated with PERV infection. In previous work we isolated two genes encoding functional human PERV receptors and proved that introduction of these into mouse fibroblasts allowed the normally nonpermissive mouse cells to become productively infected (T. A. Ericsson, Y. Takeuchi, C. Templin, G. Quinn, S. F. Farhadian, J. C. Wood, B. A. Oldmixon, K. M. Suling, J. K. Ishii, Y. Kitagawa, T. Miyazawa, D. R. Salomon, R. A. Weiss, and C. Patience, Proc. Natl. Acad. Sci. USA 100:6759-6764, 2003). In the present study we created mice transgenic for human PERV-A receptor 2 (HuPAR-2). After inoculation of transgenic animals with infectious PERV supernatants, viral DNA and RNA were detected at multiple time points, indicating productive replication. This establishes the role of HuPAR-2 in PERV infection in vivo; in addition, these transgenic mice represent a new model for determining the risk of PERV transmission and potential pathogenesis. These mice also create a unique opportunity to study the immune response to PERV infection and test potential therapeutic or preventative modalities.


Molecular Therapy | 2013

Hematopoietic Stem Cell Gene Therapy for the Multisystemic Lysosomal Storage Disorder Cystinosis

Frank Harrison; Brian A. Yeagy; Celine J. Rocca; Donald B. Kohn; Daniel R. Salomon; Stephanie Cherqui

Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders (LSDs). The defective gene is CTNS encoding the lysosomal cystine transporter, cystinosin. Cystine accumulates in all tissues and leads to organ damage including end-stage renal disease. Using the Ctns(-/-) murine model for cystinosis, we tested the use of hematopoietic stem and progenitor cells (HSPC) genetically modified to express a functional CTNS transgene using a self-inactivating-lentiviral vector (SIN-LV). We showed that transduced cells were capable of decreasing cystine content in all tissues and improved kidney function. Transduced HSPC retained their differentiative capabilities, populating all tissue compartments examined and allowing long-term expression of the transgene. Direct correlation between the levels of lentiviral DNA present in the peripheral blood and the levels present in tissues were demonstrated, which could be useful to follow future patients. Using a new model of cystinosis, the DsRed Ctns(-/-) mice, and a LV driving the expression of the fusion protein cystinosin-enhanced green fluorescent protein (eGFP), we showed that cystinosin was transferred from CTNS-expressing cells to Ctns-deficient adjacent cells in vitro and in vivo. This transfer led to cystine decreases in Ctns-deficient cells in vitro. These data suggest that the mechanism of cross-correction is possible in cystinosis.


Kidney International | 2011

Kidney preservation by bone marrow cell transplantation in hereditary nephropathy

Brian A. Yeagy; Frank Harrison; Marie-Claire Gubler; James A. Koziol; Daniel R. Salomon; Stephanie Cherqui

The prospect of cell-based therapy for kidney disease remains controversial despite its immense promise. We had previously shown that transplanting bone marrow and hematopoietic stem cells could generate renal cells and lead to the preservation of kidney function in a mouse model for cystinosis (Ctns(-/-)) that develops chronic kidney injury, 4 months post transplantation. Here, we determined the long-term effects of bone marrow stem cell transplantation on the kidney disease of Ctns(-/-) mice 7 to 15 months post transplantation. Transfer of bone marrow stem cells expressing a functional Ctns gene provided long-term protection to the kidney. Effective therapy, however, depended on achieving a relatively high level of donor-derived blood cell engraftment of Ctns-expressing cells, which was directly linked to the quantity of these cells within the kidney. In contrast, kidney preservation was dependent neither on renal cystine content nor on the age of the mice at the time of transplant. Most of the bone marrow-derived cells within the kidney were interstitial and not epithelial, suggesting that the mechanism involved an indirect protection of the tubules. Thus, our model may help in developing strategies to enhance the potential success of cell-based therapy for kidney injury and in understanding some of the discrepancies currently existing in the field.


Stem Cells | 2015

Brief Reports: Lysosomal Cross‐Correction by Hematopoietic Stem Cell‐Derived Macrophages Via Tunneling Nanotubes

Swati Naphade; Jay Sharma; Héloïse P. Gaide Chevronnay; Michael A. Shook; Brian A. Yeagy; Celine J. Rocca; Sarah N. Ur; Athena Lau; Pierre J. Courtoy; Stephanie Cherqui

Despite controversies on the potential of hematopoietic stem cells (HSCs) to promote tissue repair, we previously showed that HSC transplantation could correct cystinosis, a multisystemic lysosomal storage disease, caused by a defective lysosomal membrane cystine transporter, cystinosin (CTNS gene). Addressing the cellular mechanisms, we here report vesicular cross‐correction after HSC differentiation into macrophages. Upon coculture with cystinotic fibroblasts, macrophages produced tunneling nanotubes (TNTs) allowing transfer of cystinosin‐bearing lysosomes into Ctns‐deficient cells, which exploited the same route to retrogradely transfer cystine‐loaded lysosomes to macrophages, providing a bidirectional correction mechanism. TNT formation was enhanced by contact with diseased cells. In vivo, HSCs grafted to cystinotic kidneys also generated nanotubular extensions resembling invadopodia that crossed the dense basement membranes and delivered cystinosin into diseased proximal tubular cells. This is the first report of correction of a genetic lysosomal defect by bidirectional vesicular exchange via TNTs and suggests broader potential for HSC transplantation for other disorders due to defective vesicular proteins. Stem Cells 2015;33:301–309


Journal of The American Society of Nephrology | 2014

Time Course of Pathogenic and Adaptation Mechanisms in Cystinotic Mouse Kidneys

Héloïse P. Gaide Chevronnay; Virginie Janssens; Patrick Van Der Smissen; Francisca N’Kuli; Nathalie Nevo; Yves Guiot; Elena Levtchenko; Etienne Marbaix; Christophe E. Pierreux; Stephanie Cherqui; Corinne Antignac; Pierre J. Courtoy

Cystinosis, a main cause of Fanconi syndrome, is reproduced in congenic C57BL/6 cystinosin knockout (KO) mice. To identify the sequence of pathogenic and adaptation mechanisms of nephropathic cystinosis, we defined the onset of Fanconi syndrome in KO mice between 3 and 6 months of age and analyzed the correlation with structural and functional changes in proximal tubular cells (PTCs), with focus on endocytosis of ultrafiltrated disulfide-rich proteins as a key source of cystine. Despite considerable variation between mice at the same age, typical event sequences were delineated. At the cellular level, amorphous lysosomal inclusions preceded cystine crystals and eventual atrophy without crystals. At the nephron level, lesions started at the glomerulotubular junction and then extended distally. In situ hybridization and immunofluorescence revealed progressive loss of expression of megalin, cubilin, sodium-glucose cotransporter 2, and type IIa sodium-dependent phosphate cotransporter, suggesting apical dedifferentiation accounting for Fanconi syndrome before atrophy. Injection of labeled proteins revealed that defective endocytosis in S1 PTCs led to partial compensatory uptake by S3 PTCs, suggesting displacement of endocytic load and injury by disulfide-rich cargo. Increased PTC apoptosis allowed luminal shedding of cystine crystals and was partially compensated for by tubular proliferation. We conclude that lysosomal storage triggered by soluble cystine accumulation induces apical PTC dedifferentiation, which causes transfer of the harmful load of disulfide-rich proteins to more distal cells, possibly explaining longitudinal progression of swan-neck lesions. Furthermore, our results suggest that subsequent adaptation mechanisms include lysosomal clearance of free and crystalline cystine into urine and ongoing tissue repair.


Kidney International | 2012

Cysteamine therapy: a treatment for cystinosis, not a cure

Stephanie Cherqui

Cystinosis as a clinical entity is a progressive dysfunction of multiple organs caused by the accumulation of cystine in the tissues, leading, for example, to end-stage renal failure, diabetes, hypothyroidism, myopathy, and central nervous system deterioration. Brodin-Sartorius and colleagues present a long-term study on the impact of cysteamine therapy on these complications. The data show that cysteamine improves the outcome and complications of cystinosis but does not prevent them.

Collaboration


Dive into the Stephanie Cherqui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre J. Courtoy

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah N. Ur

University of California

View shared research outputs
Top Co-Authors

Avatar

Athena Lau

University of California

View shared research outputs
Top Co-Authors

Avatar

Jay Sharma

University of California

View shared research outputs
Top Co-Authors

Avatar

Swati Naphade

University of California

View shared research outputs
Top Co-Authors

Avatar

Virginie Janssens

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Frank Harrison

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge