Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Constantin is active.

Publication


Featured researches published by Stephanie Constantin.


Endocrinology | 2009

Kisspeptin-10 facilitates a plasma membrane-driven calcium oscillator in gonadotropin-releasing hormone-1 neurons.

Stephanie Constantin; Claudia Simone Caligioni; Stanko S. Stojilkovic; Susan Wray

Kisspeptins, the natural ligands of the G-protein-coupled receptor (GPR)-54, are the most potent stimulators of GnRH-1 secretion and as such are critical to reproductive function. However, the mechanism by which kisspeptins enhance calcium-regulated neuropeptide secretion is not clear. In the present study, we used GnRH-1 neurons maintained in mice nasal explants to examine the expression and signaling of GPR54. Under basal conditions, GnRH-1 cells exhibited spontaneous baseline oscillations in intracellular calcium concentration ([Ca(2+)](i)), which were critically dependent on the operation of voltage-gated, tetrodotoxin (TTX)-sensitive sodium channels and were not coupled to calcium release from intracellular pools. Activation of native GPR54 by kisspeptin-10 initiated [Ca(2+)](i) oscillations in quiescent GnRH-1 cells, increased the frequency of calcium spiking in oscillating cells that led to summation of individual spikes into plateau-bursting type of calcium signals in a subset of active cells. These changes predominantly reflected the stimulatory effect of GPR54 activation on the plasma membrane oscillator activity via coupling of this receptor to phospholipase C signaling pathways. Both components of this pathway, inositol 1,3,4-trisphosphate and protein kinase C, contributed to the receptor-mediated modulation of baseline [Ca(2+)](i) oscillations. TTX and 2-aminoethyl diphenylborinate together abolished agonist-induced elevation in [Ca(2+)](i) in almost all cells, whereas flufenamic acid was less effective. Together these results indicate that a plasma membrane calcium oscillator is spontaneously operative in the majority of prenatal GnRH-1 neurons and is facilitated by kisspeptin-10 through phosphatidyl inositol diphosphate hydrolysis and depolarization of neurons by activating TTX-sensitive sodium channels and nonselective cationic channels.


Endocrinology | 2010

Neuropeptide Y directly inhibits neuronal activity in a subpopulation of gonadotropin-releasing hormone-1 neurons via Y1 receptors.

Ulrike Klenke; Stephanie Constantin; Susan Wray

Neuropeptide Y (NPY), a member of the pancreatic polypeptide family, is an orexigenic hormone. GnRH-1 neurons express NPY receptors. This suggests a direct link between metabolic function and reproduction. However, the effect of NPY on GnRH-1 cells has been variable, dependent on metabolic and reproductive status of the animal. This study circumvents these issues by examining the role of NPY on GnRH-1 neuronal activity in an explant model that is based on the extra-central nervous system origin of GnRH-1 neurons. These prenatal GnRH-1 neurons express many receptors found in GnRH-1 neurons in the brain and use similar transduction pathways. In addition, these GnRH-1 cells exhibit spontaneous and ligand-induced oscillations in intracellular calcium as well as pulsatile calcium-controlled GnRH-1 release. Single-cell PCR determined that prenatal GnRH-1 neurons express the G protein-coupled Y1 receptor (Y1R). To address the influence of NPY on GnRH-1 neuronal activity, calcium imaging was used to monitor individual and population dynamics. NPY treatment, mimicked with Y1R agonist, significantly decreased the number of calcium peaks per minute in GnRH-1 neurons and was prevented by a Y1R antagonist. Pertussis toxin blocked the effect of NPY on GnRH-1 neuronal activity, indicating the coupling of Y1R to inhibitory G protein. The NPY-induced inhibition was independent of the adenylate cyclase pathway but mediated by the activation of G protein-coupled inwardly rectifying potassium channels. These results indicate that at an early developmental stage, GnRH-1 neuronal activity can be directly inhibited by NPY via its Y1R.


Endocrinology | 2009

Development of gonadotropin-releasing hormone-1 secretion in mouse nasal explants.

Stephanie Constantin; Alain Caraty; Susan Wray; Anne Duittoz

Pulsatile release of GnRH-1 is critical to stimulate gonadotropes of the anterior pituitary. This secretory pattern seems to be inherent to GnRH-1 neurons, however, the mechanisms underlying such episodical release remain unknown. In monkey nasal explants, the GnRH-1 population exhibits synchronized calcium events with the same periodicity as GnRH-1 release, suggesting a link, though the sequence of events was unclear. GnRH-1 neurons in mouse nasal explants also exhibit synchronized calcium events. In the present work, GnRH-1 release was assayed in mouse nasal explants using radioimmunology and its relationship with calcium signaling analyzed. GnRH-1 neurons generated episodical release as early as 3 d in vitro (div) and maintained such release throughout the period studied (3-21 div). The pulse frequency remained constant, suggesting that the pulse generator is operative at an early developmental stage. In contrast, pulse amplitude increased 2-fold between 3 and 7 div, and again between 7 and 14 div, suggesting maturation in synthesizing and/or secretory mechanisms. To evaluate these possibilities, total GnRH-1 content was measured. Only a small increase in GnRH-1 content was detected between 7 and 14 div, whereas a large increase occurred between 14 and 21 div. These data indicate that GnRH-1 content was not a limiting factor for the amplitude of the pulses at 7 div but that the secretory mechanisms mature between 3 and 14 div. The application of kisspeptin-10 revealed the ability of GnRH-1 neurons to integrate signals from natural ligands into a secretory response. Finally, simultaneous sampling of medium and calcium imaging recordings indicated that the synchronized calcium events and secretory events are congruent.


Endocrinology | 2010

The Calcium Oscillator of GnRH-1 Neurons Is Developmentally Regulated

Stephanie Constantin; Ulrike Klenke; Susan Wray

Oscillations in intracellular calcium levels have been described in GnRH-1 neurons in both prenatal and adult cells. However, differences have been reported in the mechanisms underlying these [Ca(2+)](i) oscillations, dependent on the model used. The goal of this study was to address whether these changes depend on the maturation status of GnRH-1 neurons by assaying prenatal GnRH-1 cells maintained in explants, at two different developmental stages. This report documents an increase in the frequency of [Ca(2+)](i) oscillations between 1 and 3 wk of in vitro maturation. During the early stage, [Ca(2+)](i) oscillations are blocked by tetrodotoxin and are mainly triggered by excitatory neurotransmitters, gamma-aminobutyric acid (GABA), and glutamate. In contrast, in the later stage, some cells exhibit residual tetrodotoxin-insensitive [Ca(2+)](i) oscillations, which are sustained by action potential-independent GABA and glutamate release. The strength of these two excitatory inputs remained relatively constant during the maturation process, and the increase in frequency of [Ca(2+)](i) oscillations observed at the later stage is due to a novel excitatory input carried by cholecystokinin. Together, these data indicate developmentally regulated release and interactions of neurotransmitters (known regulators of GnRH-1 cells in adults) and point to extrinsic factors regulating GnRH-1 cellular physiology.


Endocrinology | 2016

BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway

Ulrike Klenke; Stephanie Constantin; Susan Wray

Peripheral feedback of gonadal estrogen to the hypothalamus is critical for reproduction. Bisphenol A (BPA), an environmental pollutant with estrogenic actions, can disrupt this feedback and lead to infertility in both humans and animals. GnRH neurons are essential for reproduction, serving as an important link between brain, pituitary, and gonads. Because GnRH neurons express several receptors that bind estrogen, they are potential targets for endocrine disruptors. However, to date, direct effects of BPA on GnRH neurons have not been shown. This study investigated the effects of BPA on GnRH neuronal activity using an explant model in which large numbers of primary GnRH neurons are maintained and express many of the receptors found in vivo. Because oscillations in intracellular calcium have been shown to correlate with electrical activity in GnRH neurons, calcium imaging was used to assay the effects of BPA. Exposure to 50μM BPA significantly decreased GnRH calcium activity. Blockage of γ-aminobutyric acid ergic and glutamatergic input did not abrogate the inhibitory BPA effect, suggesting direct regulation of GnRH neurons by BPA. In addition to estrogen receptor-β, single-cell RT-PCR analysis confirmed that GnRH neurons express G protein-coupled receptor 30 (G protein-coupled estrogen receptor 1) and estrogen-related receptor-γ, all potential targets for BPA. Perturbation studies of the signaling pathway revealed that the BPA-mediated inhibition of GnRH neuronal activity occurred independent of estrogen receptors, GPER, or estrogen-related receptor-γ, via a noncanonical pathway. These results provide the first evidence of a direct effect of BPA on GnRH neurons.


Endocrinology | 2016

Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons

Stephanie Constantin; Susan Wray

GnRH neurons are regulated by hypothalamic kisspeptin neurons. Recently, galanin was identified in a subpopulation of kisspeptin neurons. Although the literature thoroughly describes kisspeptin activation of GnRH neurons, little is known about the effects of galanin on GnRH neurons. This study investigated whether galanin could alter kisspeptin signaling to GnRH neurons. GnRH cells maintained in explants, known to display spontaneous calcium oscillations, and a long-lasting calcium response to kisspeptin-10 (kp-10), were used. First, transcripts for galanin receptors (GalRs) were examined. Only GalR1 was found in GnRH neurons. A series of experiments was then performed to determine the action of galanin on kp-10 activated GnRH neurons. Applied after kp-10 activation, galanin 1-16 (Gal1-16) rapidly suppressed kp-10 activation. Applied with kp-10, Gal1-16 prevented kp-10 activation until its removal. To determine the mechanism by which galanin inhibited kp-10 activation of GnRH neurons, Gal1-16 and galanin were applied to spontaneously active GnRH neurons. Both inhibited GnRH neuronal activity, independent of GnRH neuronal inputs. This inhibition was mimicked by a GalR1 agonist but not by GalR2 or GalR2/3 agonists. Although Gal1-16 inhibition relied on Gi/o signaling, it was independent of cAMP levels but sensitive to blockers of G protein-coupled inwardly rectifying potassium channels. A newly developed bioassay for GnRH detection showed Gal1-16 decreased the kp-10-evoked GnRH secretion below detection threshold. Together, this study shows that galanin is a potent regulator of GnRH neurons, possibly acting as a physiological break to kisspeptin excitation.


Frontiers in Endocrinology | 2017

Progress and Challenges in the Search for the Mechanisms of Pulsatile Gonadotropin-Releasing Hormone Secretion

Stephanie Constantin

Fertility relies on the proper functioning of the hypothalamic–pituitary–gonadal axis. The hormonal cascade begins with hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH) into the hypophyseal portal system. In turn, the GnRH-activated gonadotrophs in the anterior pituitary release gonadotropins, which then act on the gonads to regulate gametogenesis and sex steroidogenesis. Finally, sex steroids close this axis by feeding back to the hypothalamus. Despite this seeming straightforwardness, the axis is orchestrated by a complex neuronal network in the central nervous system. For reproductive success, GnRH neurons, the final output of this network, must integrate and translate a wide range of cues, both environmental and physiological, to the gonadotrophs via pulsatile GnRH secretion. This secretory profile is critical for gonadotropic function, yet the mechanisms underlying these pulses remain unknown. Literature supports both intrinsically and extrinsically driven GnRH neuronal activity. However, the caveat of the techniques supporting either one of the two hypotheses is the gap between events recorded at a single-cell level and GnRH secretion measured at the population level. This review aims to compile data about GnRH neuronal activity focusing on the physiological output, GnRH secretion.


Frontiers in Cellular Neuroscience | 2018

Reelin Can Modulate Migration of Olfactory Ensheathing Cells and Gonadotropin Releasing Hormone Neurons via the Canonical Pathway

Leigh Dairaghi; Ellen M. Flannery; Paolo Giacobini; Aybike Saglam; Hassan Saadi; Stephanie Constantin; Filippo Casoni; Brian W. Howell; Susan Wray

One key signaling pathway known to influence neuronal migration involves the extracellular matrix protein Reelin. Typically, signaling of Reelin occurs via apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR), and the cytoplasmic adapter protein disabled 1 (Dab1). However, non-canonical Reelin signaling has been reported, though no receptors have yet been identified. Cariboni et al. (2005) indicated Dab1-independent Reelin signaling impacts gonadotropin releasing hormone-1 (GnRH) neuronal migration. GnRH cells are essential for reproduction. Prenatal migration of GnRH neurons from the nasal placode to the forebrain, juxtaposed to olfactory axons and olfactory ensheathing cells (OECs), has been well documented, and it is clear that alterations in migration of these cells can cause delayed or absent puberty. This study was initiated to delineate the non-canonical Reelin signaling pathways used by GnRH neurons. Chronic treatment of nasal explants with CR-50, an antibody known to interfere with Reelin homopolymerization and Dab1 phosphorylation, decreased the distance GnRH neurons and OECs migrated. Normal migration of these two cell types was observed when Reelin was co-applied with CR-50. Immunocytochemistry was performed to determine if OECs might transduce Reelin signals via the canonical pathway, and subsequently indirectly altering GnRH neuronal migration. We show that in mouse: (1) both OECs and GnRH cells express ApoER2, VLDLR and Dab1, and (2) GnRH neurons and OECs show a normal distribution in the brain of two mutant reeler lines. These results indicate that the canonical Reelin pathway is present in GnRH neurons and OECs, but that Reelin is not essential for development of these two systems in vivo.


Endocrinology | 2008

Gonadotropin-Releasing Hormone-1 Neuronal Activity Is Independent of Cyclic Nucleotide-Gated Channels

Stephanie Constantin; Susan Wray


Endocrinology | 2008

Gonadotropin-releasing hormone-1 neuronal activity is independent of hyperpolarization-activated cyclic nucleotide-modulated channels but is sensitive to protein kinase a-dependent phosphorylation.

Stephanie Constantin; Susan Wray

Collaboration


Dive into the Stephanie Constantin's collaboration.

Top Co-Authors

Avatar

Susan Wray

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ulrike Klenke

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Brian W. Howell

State University of New York Upstate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stanko S. Stojilkovic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Alain Caraty

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Anne Duittoz

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge