Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Dahan is active.

Publication


Featured researches published by Stephanie Dahan.


Cell | 2014

Crosstalk between Muscularis Macrophages and Enteric Neurons Regulates Gastrointestinal Motility

Paul Andrew Muller; Balázs Koscsó; Gaurav Manohar Rajani; Korey Stevanovic; Marie Luise Berres; Daigo Hashimoto; Arthur Mortha; Marylene Leboeuf; Xiu-Min Li; Daniel Mucida; E. Richard Stanley; Stephanie Dahan; Kara Gross Margolis; Michael D. Gershon; Miriam Merad; Milena Bogunovic

Intestinal peristalsis is a dynamic physiologic process influenced by dietary and microbial changes. It is tightly regulated by complex cellular interactions; however, our understanding of these controls is incomplete. A distinct population of macrophages is distributed in the intestinal muscularis externa. We demonstrate that, in the steady state, muscularis macrophages regulate peristaltic activity of the colon. They change the pattern of smooth muscle contractions by secreting bone morphogenetic protein 2 (BMP2), which activates BMP receptor (BMPR) expressed by enteric neurons. Enteric neurons, in turn, secrete colony stimulatory factor 1 (CSF1), a growth factor required for macrophage development. Finally, stimuli from microbial commensals regulate BMP2 expression by macrophages and CSF1 expression by enteric neurons. Our findings identify a plastic, microbiota-driven crosstalk between muscularis macrophages and enteric neurons that controls gastrointestinal motility. PAPERFLICK:


Infection and Immunity | 2003

Saccharomyces boulardii Interferes with Enterohemorrhagic Escherichia coli-Induced Signaling Pathways in T84 Cells

Stephanie Dahan; Guillaume Dalmasso; Véronique Imbert; Jean-François Peyron; Patrick Rampal; Dorota Czerucka

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) infections are associated with the modification of tight-junction permeability and synthesis of proinflammatory cytokine interleukin-8 (IL-8). In a previous study, it was demonstrated that EHEC-induced IL-8 secretion is due to the involvement of the mitogen-activated protein kinase (MAPK), AP-1, and NF-κB pathways. In this study, we investigated the effect of the yeast Saccharomyces boulardii on EHEC infection in T84 cells. For this purpose, cells were (i) incubated with bacteria and yeast at the same time or (ii) incubated overnight with yeast cells that were maintained during infection or eliminated by several washes before infection. Coincubation is sufficient to maintain the transmonolayer electrical resistance (TER) of EHEC-infected cells, whereas the preincubation of cells with the yeast without elimination of the yeast during infection is necessary to significantly decrease IL-8 secretion. We thus analyzed the mechanisms of S. boulardii action. We showed that S. boulardii has no effect on EHEC growth or on EHEC adhesion. Kinetics studies revealed that EHEC-induced myosin light chain (MLC) phosphorylation precedes the decrease of TER. ML-7, an MLC kinase inhibitor, abolishes the EHEC-induced MLC phosphorylation and decrease of TER. Studies show that S. boulardii also abolishes EHEC-induced MLC phosphorylation. We demonstrated that the preincubation of cells with S. boulardii without washes before EHEC infection inhibits NF-κB DNA binding activity, phosphorylation and degradation of IκB-α, and activation of the three members of a MAPK group (extracellular signal-regulated protein kinases 1 and 2, p38, and c-jun N-terminal kinase). These findings demonstrate that S. boulardii exerts a preventive effect on EHEC infection by (i) interfering with one of the transduction pathways implicated in the control of tight-junction structure and (ii) decreasing IL-8 proinflammatory secretion via inhibition of the NF-κB and MAPK signaling pathways in infected T84 cells.


Immunological Reviews | 2007

Epithelia : lymphocyte interactions in the gut

Stephanie Dahan; Franziska Roth-Walter; Paul Arnaboldi; Shradha Agarwal; Lloyd Mayer

Summary:  The mucosal immune system is governed by a unique set of rules and regulations. The local microenvironment dictates the necessity for these differences. The intestinal epithelial cell (IEC) sits at the interface between an antigen‐rich lumen and a lymphocyte‐rich lamina propria (LP). The cross talk that occurs between these compartments serves to maintain intestinal homeostasis. IECs have the capacity to talk to LP lymphocytes, activating populations of unique regulatory T cells. These cells have the capacity to talk back to the epithelium, influencing epithelial cell growth and differentiation. This review looks at this cross talk and places it in the context of mucosal immunoregulation.


Infection and Immunity | 2002

Enterohemorrhagic Escherichia coli Infection Induces Interleukin-8 Production via Activation of Mitogen-Activated Protein Kinases and the Transcription Factors NF-κB and AP-1 in T84 Cells

Stephanie Dahan; Valère Busuttil; Véronique Imbert; Jean-François Peyron; Patrick Rampal; Dorota Czerucka

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) infections are associated with hemorrhagic colitis and the hemolytic-uremic syndrome (HUS). In vivo, elevated plasma levels of the proinflammatory cytokine interleukin-8 (IL-8) in EHEC-infected children are correlated with a high risk of developing HUS. As IL-8 gene transcription is regulated by the transcription factors NF-κB and AP-1, we analyzed the role of these factors in the regulation of IL-8 production after infection of the epithelial intestinal T84 cell line by EHEC. By 6 h of infection, EHEC had induced significant secretion of IL-8 (35.84 ± 6.76 ng/ml versus 0.44 ± 0.04 ng/ml in control cells). EHEC induced AP-1 and NF-κB activation by 3 h of infection. Moreover, the three mitogen-activated protein kinases (MAPK) (ERK1/2, p38, and JNK) were phosphorylated in EHEC-infected T84 cells concomitant with induction of AP-1 DNA binding activity, and IκB-α was phosphorylated and then degraded concomitant with induction of NF-κB DNA binding activity. Pretreatment of cells with the highly specific MEK1/2 inhibitor U0126, the p38 inhibitor SB203580, and/or the proteasome inhibitor ALLN led to inhibition of the IL-8 secretion induced in EHEC-infected T84 cells. These findings demonstrate that (i) EHEC can induce in vitro a potent proinflammatory response by secretion of IL-8 and (ii) the secretion of IL-8 is due to the involvement of MAPK, AP-1, and NF-κB signaling pathways.


Journal of Biological Chemistry | 2010

MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation.

Hang Thi Thu Nguyen; Guillaume Dalmasso; Yutao Yan; Hamed Laroui; Stephanie Dahan; Lloyd Mayer; Shanthi V. Sitaraman; Didier Merlin

The transmembrane glycoprotein CD98 regulates multiple cellular functions, including extracellular signaling, epithelial cell adhesion/polarity, amino acid transport, and cell-cell interactions. MicroRNAs post-transcriptionally regulate gene expression, thereby functioning as modulators of numerous cellular processes, such as cell differentiation, proliferation, and apoptosis. Here, we investigated if microRNAs regulate CD98 expression during intestinal epithelial cell differentiation and inflammation. We found that microRNA-7 repressed CD98 expression in Caco2-BBE cells by directly targeting the 3′-untranslated region of human CD98 mRNA. Expression of CD98 was decreased, whereas that of microRNA-7 was increased in well-differentiated Caco2-BBE cells compared with undifferentiated cells. Undifferentiated crypt cells isolated from mouse jejunum showed higher CD98 levels and lower levels of mmu-microRNA-706, a murine original microRNA candidate for CD98, than well-differentiated villus cells. Importantly, microRNA-7 decreased Caco2-BBE cell attachment on laminin-1, and CD98 overexpression recovered this inhibition, suggesting that microRNA-7 modulates epithelial cell adhesion to extracellular matrix, which in turn could affect proliferation and differentiation during the migration of enterocytes across the crypt-villus axis, by regulating CD98 expression. In a pathological context, the pro-inflammatory cytokine interleukin 1-β increased CD98 expression in Caco2-BBE cells by decreasing microRNA-7 levels. Consistent with the in vitro findings, microRNA-7 levels were decreased in actively inflamed Crohn disease colonic tissues, where CD98 expression was up-regulated, compared with normal tissues. Together, these results reveal a novel mechanism underlying regulation of CD98 expression during patho-physiological states. This study raises microRNAs as a promising target for therapeutic modulations of CD98 expression in intestinal inflammatory disorders.


Infection and Immunity | 2001

Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection.

Dorota Czerucka; Stephanie Dahan; Baharia Mograbi; Bernard Rossi; Patrick Rampal

ABSTRACT Enteropathogenic Escherichia coli (EPEC) infection of T84 cells induces a decrease in transepithelial resistance, the formation of attaching and effacing (A/E) lesions, and cytokine production. The purpose of this study was to investigate the ability of EPEC to activate mitogen-activated protein (MAP) kinases in T84 cells and to correlate these signaling pathways with EPEC-induced cell responses. T84 cells were infected with either the wild-type (WT) EPEC strain E2348/69 or two mutants, intimin deletion strain CVD206 (ΔeaeA) and type III secretion apparatus mutant strain CVD452 (ΔescN::aphA). Infection of T84 cells with WT but not mutant EPEC strains induced tyrosine phosphorylation of several proteins in T84 cells, including the p46 and p52 Shc isoforms. Kinetics studies revealed that ERK1/2, p38, and c-Jun N-terminal kinase (JNK) MAP kinases were activated in cells infected with strain E2348/69 but not with the mutant strains. Inhibition of MAP kinases with PD98059 or SB203580 did not affect the EPEC-induced decrease in transepithelial resistance or actin accumulation beneath the WT bacteria, but these two inhibitors significantly decreased interleukin-8 (IL-8) synthesis. We demonstrate that EPEC induces activation of ERK1/2, p38, and JNK cascades, which all depend on bacterial adhesion and expression of the bacterial type III secretion system. ERK1/2 and p38 MAP kinases were equally implicated in IL-8 expression but did not participate in A/E lesion formation or transepithelial resistance modification, indicating that the signaling pathways involved in these events are distinct.


Gastroenterology | 2011

Notch-1 Signaling Regulates Intestinal Epithelial Barrier Function, Through Interaction With CD4+ T Cells, in Mice and Humans

Stephanie Dahan; Keren M. Rabinowitz; Andrea Paula Martin; M. Cecilia Berin; Jay C. Unkeless; Lloyd Mayer

BACKGROUND & AIMS Interactions between lymphocytes and intestinal epithelial cells occur in the subepithelial space of the gastrointestinal tract. Normal human lamina propria lymphocytes (LPLs) induce differentiation of intestinal epithelial cells. The absence of LPLs in mice, such as in RAG1(-/-) mice, results in defects in epithelial cell differentiation. We investigated the role of lymphoepithelial interactions in epithelial differentiation and barrier function. METHODS We used adoptive transfer to determine if CD4(+) T cells (CD4(+)CD62L(+)CD45Rb(Hi) and/or CD4(+)CD62L(+)CD45Rb(Lo)) could overcome permeability defect (quantified in Ussing chambers). Immunofluorescence staining was performed to determine expression of cleaved Notch-1, villin, and claudin 5 in colon samples from mice and humans. Caco-2 cells were infected with a lentivirus containing a specific Notch-1 or scrambled short hairpin RNA sequence. Tight junction assembly was analyzed by immunoblot and immunofluorescence analyses, and transepithelial resistance was monitored. RESULTS Expression of cleaved Notch-1, villin, or claudin 5 was not detected in RAG1(-/-) colonocytes; their loss correlated with increased intestinal permeability. Transfer of CD45Rb(Hi) and/or CD45Rb(Lo) cells into RAG1(-/-) mice induced expression of cleaved Notch, villin, and claudin 5 in colonocytes and significantly reduced the permeability of the distal colon. Loss of Notch-1 expression in Caco-2 cells correlated with decreased transepithelial resistance and dysregulated expression and localization of tight junction proteins. Levels of cleaved Notch-1 were increased in colonic epithelium of patients with Crohns disease. CONCLUSIONS LPLs promote mucosal barrier function, which is associated with activation of the Notch-1 signaling pathway. LPLs maintain intestinal homeostasis by inducing intestinal epithelial cell differentiation, polarization, and barrier function.


Inflammatory Bowel Diseases | 2009

Defect in CEACAM family member expression in Crohn's disease IECs is regulated by the transcription factor SOX9.

Giulia Roda; Stephanie Dahan; Laura Mezzanotte; Alessandra Caponi; Franziska Roth-Walter; David Pinn; Lloyd Mayer

Background: CEACAM1, CEACAM5, and CEACAM6 represent 3 of the CEACAM (carcinoembryonic antigen‐related cell adhesion molecule) subfamily members expressed on intestinal epithelial cells (IECs). Deficiency in their expression, as seen in inflammatory bowel disease (IBD), results in the lack of activation of CD8+ regulatory T cells in the mucosa. Since CEACAM expression was shown to be regulated by the transcription factor SOX9, we sought to determine whether the defect in CEACAM expression in IBD was related to aberrant SOX9 expression. Methods: IECs and lamina propria lymphocytes (LPLs) were freshly isolated from colonic tissues. T84 and HT29 16E cells were cocultured with LPLs. SOX9 and CEACAM subfamily member expression was assessed by real‐time polymerase chain reaction (PCR), Western blot, immunohistochemistry, and immunofluorescence. Results: In Crohns disease (CD) but not in ulcerative colitis (UC), a significant reduction in mRNA and protein expression for CEACAM1 and 5 was noted; in contrast, no difference in SOX9 mRNA expression was seen. However, nuclear SOX9 immunostaining was increased in CD IECs. Furthermore, SOX9 protein was reduced in the cytoplasm of LPL‐stimulated T84 and HT29 16E cells, while CEACAM5 expression was increased. Conclusions: The defect in CEACAM family members in CD IECs appears to be related to the aberrant nuclear localization of SOX9. Changes in SOX9 expression in the CD mucosa relate to the local microenvironment and altered IEC:LPL crosstalk. Inflamm Bowel Dis 2009


Mucosal Immunology | 2014

Mouse and human Notch-1 regulate mucosal immune responses

D R Mathern; L E Laitman; Z Hovhannisyan; David Dunkin; S Farsio; T J Malik; Giulia Roda; A Chitre; Alina Iuga; Garabet Yeretssian; M C Berin; Stephanie Dahan

The Notch-1 signaling pathway is responsible for homeostatic tight junction expression in vitro, and promotes barrier function in vivo in the RAG1-adoptive transfer model of colitis. In this study, we sought to determine the role of colonic Notch-1 in the lymphoepithelial crosstalk in health and disease. We utilized in vivo and in vitro knockdown to target the expression of Notch-1. We identified that epithelial Notch-1 is required for appropriate activation of intestinal epithelial cells at steady state and upon inflammatory stimulus. Notch-1 expression modulates mucosal chemokine and cytokine secretion, and FoxP3 and effector T-cell responses. We showed that epithelial Notch-1 controls the immune function of the epithelium through crosstalk with the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) pathways that, in turn, elicits T-cell responses. Overall, epithelial Notch-1 bridges innate and adaptive immunity in the gut. Our findings highlight an indispensable role for Notch-1-mediated signaling in the intricate epithelial-immune crosstalk, and validate that epithelial Notch-1 is necessary and sufficient to support protective epithelial proinflammatory responses.


Gastroenterology | 2013

Transforming growth factor β signaling controls activities of human intestinal CD8(+)T suppressor cells.

Keren M. Rabinowitz; Yuanyuan Wang; Edward Y. Chen; Zara Hovhannisyan; David Chiang; M. Cecilia Berin; Stephanie Dahan; Damien Chaussabel; Avi Ma'ayan; Lloyd Mayer

BACKGROUND & AIMS In healthy individuals, interactions between intestinal epithelial cells and lamina propria lymphocytes give rise to a population of CD8(+) T cells with suppressor functions (Ts cells). Disruption of Ts cell activities can lead to mucosal inflammation. We investigated what factors were required for expansion of the Ts cell population or loss of their activity in patients with Crohns disease (CD). METHODS We developed a method to generate Ts cell lines from freshly isolated lamina propria lymphocytes from patients with ulcerative colitis (UC), patients with CD, or healthy individuals (controls). Cells were stimulated with a monoclonal antibody against CD3, interleukin (IL)-7, and IL-15. After 14 days in culture, CD8(+)T cells were purified and cultured with IL-7 and IL-15. The resulting Ts cells were analyzed for suppressor activity, expression of surface markers, and cytokine secretion profiles. RNA was isolated from the 3 groups of Ts cells and used in microarray analyses. RESULTS Ts cells from patients with UC and controls suppressed proliferation of CD4(+) T cells; the suppression required cell contact. In contrast, Ts cells from patients with CD had a reduced capacity to suppress CD4(+) T-cell proliferation. The difference in suppressive ability was not associated with surface or intracytoplasmic markers or secretion of cytokines. Microarray analysis identified changes in expression of genes regulated by transforming growth factor (TGF)-β that were associated with the suppressive abilities of Ts cells. We found that TGF-β or supernatants from Ts cells of patients with CD reduced the suppressor activity of control Ts cells. CONCLUSIONS Ts cells isolated from patients with CD have a reduced ability to suppress proliferation of CD4(+)T cells compared with control Ts cells. TGF-β signaling reduces the suppressor activity of Ts cells.

Collaboration


Dive into the Stephanie Dahan's collaboration.

Top Co-Authors

Avatar

Lloyd Mayer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Giulia Roda

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

David Dunkin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Dorota Czerucka

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Patrick Rampal

University of Nice Sophia Antipolis

View shared research outputs
Top Co-Authors

Avatar

Alina Iuga

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Xiu-Min Li

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Andrea P. Martin

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Avantika Chitre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Douglas R. Mathern

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge