Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Di Stasi is active.

Publication


Featured researches published by Stephanie Di Stasi.


American Journal of Sports Medicine | 2013

Current Concepts for Injury Prevention in Athletes After Anterior Cruciate Ligament Reconstruction

Timothy E. Hewett; Stephanie Di Stasi; Gregory D. Myer

Ligament reconstruction is the current standard of care for active patients with an anterior cruciate ligament (ACL) rupture. Although the majority of ACL reconstruction (ACLR) surgeries successfully restore the mechanical stability of the injured knee, postsurgical outcomes remain widely varied. Less than half of athletes who undergo ACLR return to sport within the first year after surgery, and it is estimated that approximately 1 in 4 to 1 in 5 young, active athletes who undergo ACLR will go on to a second knee injury. The outcomes after a second knee injury and surgery are significantly less favorable than outcomes after primary injuries. As advances in graft reconstruction and fixation techniques have improved to consistently restore passive joint stability to the preinjury level, successful return to sport after ACLR appears to be predicated on numerous postsurgical factors. Importantly, a secondary ACL injury is most strongly related to modifiable postsurgical risk factors. Biomechanical abnormalities and movement asymmetries, which are more prevalent in this cohort than previously hypothesized, can persist despite high levels of functional performance, and also represent biomechanical and neuromuscular control deficits and imbalances that are strongly associated with secondary injury incidence. Decreased neuromuscular control and high-risk movement biomechanics, which appear to be heavily influenced by abnormal trunk and lower extremity movement patterns, not only predict first knee injury risk but also reinjury risk. These seminal findings indicate that abnormal movement biomechanics and neuromuscular control profiles are likely both residual to, and exacerbated by, the initial injury. Evidence-based medicine (EBM) strategies should be used to develop effective, efficacious interventions targeted to these impairments to optimize the safe return to high-risk activity. In this Current Concepts article, the authors present the latest evidence related to risk factors associated with ligament failure or a secondary (contralateral) injury in athletes who return to sport after ACLR. From these data, they propose an EBM paradigm shift in postoperative rehabilitation and return-to-sport training after ACLR that is focused on the resolution of neuromuscular deficits that commonly persist after surgical reconstruction and standard rehabilitation of athletes.


American Journal of Sports Medicine | 2013

Gait Patterns Differ Between ACL-Reconstructed Athletes Who Pass Return-to-Sport Criteria and Those Who Fail

Stephanie Di Stasi; David Logerstedt; Emily S. Gardinier; Lynn Snyder-Mackler

Background: The current standard of practice for an athlete to return to sport after anterior cruciate ligament (ACL) reconstruction is varied. Attempt to return to activity is typically advised 6 months after surgery, but functional performance deficits and gait abnormalities are often still evident and may have important implications on future function. Hypothesis: When comparing the involved and uninvolved limbs, patients who failed return-to-sport (RTS) criteria would demonstrate (1) smaller peak knee angles, extensor moments, and peak power absorption at the knee of the involved limb and (2) larger peak hip angles, extensor moments, and peak power generation of the involved limb. Study Design: Controlled laboratory study. Methods: A total of 42 patients completed functional and biomechanical gait assessment 6 months after ACL reconstruction. Functional testing involved an isometric quadriceps strength test, 4 single-legged hop tests, and 2 self-report questionnaires. Three-dimensional motion analysis was used to measure sagittal plane kinematics and kinetics of the hip and knee. A mixed-model analysis of variance and post hoc t tests were used to compare the limb symmetry of those who passed and those who did not pass RTS criteria. Minimal clinically important differences were calculated from healthy gait data and used to further define meaningful limb asymmetries. Results: Twenty of the 42 (48%) patients passed RTS criteria 6 months after ACL reconstruction. Patients who did not pass the criteria demonstrated statistically significant differences between limbs on all kinematic and kinetic variables at the knee (P ≤ .027). Clinically meaningful asymmetries at the hip were also identified in this group. Only kinetic asymmetries at the knee were identified in the patients who passed RTS criteria. Conclusion: Athletes who demonstrate superior functional performance 6 months after ACL reconstruction may have fewer abnormal and asymmetrical gait behaviors than their poorer performing counterparts. Patients who did not pass RTS criteria not only demonstrated larger kinematic and kinetic asymmetries between limbs but also appeared to use a gait strategy more closely aligned with athletes early after ACL rupture. Clinical Relevance: Poor performance on a battery of functional performance measures may be related to the presence of movement asymmetries in athletes after ACL reconstruction. Objective RTS criteria have the potential to provide information to clinicians who determine when these athletes return to activity, and may aid in the prescription of targeted rehabilitation to address underlying movement asymmetry.


Journal of Biomechanics | 2011

Quadriceps strength and weight acceptance strategies continue to improve two years after anterior cruciate ligament reconstruction

Ben D. Roewer; Stephanie Di Stasi; Lynn Snyder-Mackler

The anterior cruciate ligament (ACL) is the most commonly-injured knee ligament during sporting activities. After injury, most individuals experience episodes of the knee giving way during daily activities (non-copers). Non-copers demonstrate asymmetrical quadriceps strength and movement patterns, which could have long-term deleterious effects on the integrity of the knee joint. The purpose of this study was to determine if non-copers resolve their strength and movement asymmetries within two years after surgery. 26 Non-copers were recruited to undergo pre-operative quadriceps strength testing and 3-dimensional gait analysis. Subjects underwent surgery to reconstruct the ligament followed by physical therapy focused on restoring normal range of motion, quadriceps strength, and function. Subjects returned for quadriceps strength testing and gait analysis six months and two years after surgery. Acutely after injury, quadriceps strength was asymmetric between limbs, but resolved six months after surgery. Asymmetric knee angles, knee moments, and knee and hip power profiles were also observed acutely after injury and persisted six months after surgery despite subjects achieving symmetrical quadriceps strength. Two years after surgery, quadriceps strength in the involved limb continued to improve and most kinematic and kinetic asymmetries resolved. These findings suggest that adequate quadriceps strength does not immediately resolve gait asymmetries in non-copers. They also suggest that non-copers have the capacity to improve their quadriceps strength and gait symmetry long after ACL reconstruction.


British Journal of Sports Medicine | 2015

High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: Is PFP itself a predictor for subsequent ACL injury?

Gregory D. Myer; Kevin R. Ford; Stephanie Di Stasi; Kim D. Barber Foss; Lyle J. Micheli; Timothy E. Hewett

Background Identifying risk factors for knee pain and anterior cruciate ligament (ACL) injury can be an important step in the injury prevention cycle. Objective We evaluated two unique prospective cohorts with similar populations and methodologies to compare the incidence rates and risk factors associated with patellofemoral pain (PFP) and ACL injury. Methods The ‘PFP cohort’ consisted of 240 middle and high school female athletes. They were evaluated by a physician and underwent anthropometric assessment, strength testing and three-dimensional landing biomechanical analyses prior to their basketball season. 145 of these athletes met inclusion for surveillance of incident (new) PFP by certified athletic trainers during their competitive season. The ‘ACL cohort’ included 205 high school female volleyball, soccer and basketball athletes who underwent the same anthropometric, strength and biomechanical assessment prior to their competitive season and were subsequently followed up for incidence of ACL injury. A one-way analysis of variance was used to evaluate potential group (incident PFP vs ACL injured) differences in anthropometrics, strength and landing biomechanics. Knee abduction moment (KAM) cut-scores that provided the maximal sensitivity and specificity for prediction of PFP or ACL injury risk were also compared between the cohorts. Results KAM during landing above 15.4 Nm was associated with a 6.8% risk to develop PFP compared to a 2.9% risk if below the PFP risk threshold in our sample. Likewise, a KAM above 25.3 Nm was associated with a 6.8% risk for subsequent ACL injury compared to a 0.4% risk if below the established ACL risk threshold. The ACL-injured athletes initiated landing with a greater knee abduction angle and a reduced hamstrings-to-quadriceps strength ratio relative to the incident PFP group. Also, when comparing across cohorts, the athletes who suffered ACL injury also had lower hamstring/quadriceps ratio than the players in the PFP sample (p<0.05). Conclusions In adolescent girls aged 13.3 years, >15 Nm of knee abduction load during landing is associated with greater likelihood of developing PFP. Also, in girls aged 16.1 years who land with >25 Nm of knee abduction load during landing are at increased risk for both PFP and ACL injury.


Journal of Orthopaedic & Sports Physical Therapy | 2013

Neuromuscular Training to Target Deficits Associated With Second Anterior Cruciate Ligament Injury

Stephanie Di Stasi; Gregory D. Myer; Timothy E. Hewett

SYNOPSIS Successful return to previous level of activity following anterior cruciate ligament (ACL) reconstruction is not guaranteed, and the prevalence of second ACL injury may be as high as 30%. In particular, younger athletes who return to sports activities within the first several months after ACL reconstruction may be at significantly greater risk of a second ACL rupture compared to older, less active individuals. Significant neuromuscular deficits and functional limitations are commonly identified in athletes following ACL reconstruction, and these abnormal movement and neuromuscular control profiles may be both residual of deficits existing prior to the initial injury and exacerbated by the injury and subsequent ACL reconstruction surgery. Following ACL reconstruction, neuromuscular deficits are present in both the surgical and nonsurgical limbs, and accurately predict second-ACL injury risk in adolescent athletes. While second ACL injury in highly active individuals may be predicated on a number of modifiable and nonmodifiable factors, clinicians have the greatest potential to address the modifiable postsurgical risk factors through targeted neuromuscular interventions. This manuscript will (1) summarize the neuromuscular deficits commonly identified at medical discharge to return to sport, (2) provide the evidence underlying second-ACL injury risk factors, (3) propose a method to assess the modifiable deficits related to second-ACL injury risk, and (4) outline a method of intervention to prevent second ACL injury. The program described in this clinical commentary was developed with consideration for the modifiable factors related to second-injury risk, the principles of motor learning, and careful selection of the exercises that may most effectively modify aberrant neuromuscular patterns. Future validation of this evidence-based, late-phase rehabilitation program may be a critical factor in maximizing return-to-activity success and reduction of second-injury risk in highly active individuals. LEVEL OF EVIDENCE Therapy, level 5.


Physical Therapy | 2010

Effects of Statins on Skeletal Muscle: A Perspective for Physical Therapists

Stephanie Di Stasi; Toran D. MacLeod; Joshua D. Winters; Stuart A. Binder-Macleod

Hyperlipidemia, also known as high blood cholesterol, is a cardiovascular health risk that affects more than one third of adults in the United States. Statins are commonly prescribed and successful lipid-lowering medications that reduce the risks associated with cardiovascular disease. The side effects most commonly associated with statin use involve muscle cramping, soreness, fatigue, weakness, and, in rare cases, rapid muscle breakdown that can lead to death. Often, these side effects can become apparent during or after strenuous bouts of exercise. Although the mechanisms by which statins affect muscle performance are not entirely understood, recent research has identified some common causative factors. As musculoskeletal and exercise specialists, physical therapists have a unique opportunity to identify adverse effects related to statin use. The purposes of this perspective article are: (1) to review the metabolism and mechanisms of actions of statins, (2) to discuss the effects of statins on skeletal muscle function, (3) to detail the clinical presentation of statin-induced myopathies, (4) to outline the testing used to diagnose statin-induced myopathies, and (5) to introduce a role for the physical therapist for the screening and detection of suspected statin-induced skeletal muscle myopathy.


Clinical Biomechanics | 2012

The effects of neuromuscular training on the gait patterns of ACL-deficient men and women

Stephanie Di Stasi; Lynn Snyder-Mackler

BACKGROUND Anterior cruciate ligament rupture is the most common knee ligament injury sustained by active individuals, and the relative injury risk is sex-specific. Women not only demonstrate an increased risk for injury, but also a poorer response following ligament rupture. Perturbation training has shown positive results in healthy females, but gender-specific responses to training after injury have not been evaluated. The purpose of this investigation was to describe the effects of perturbation training on the gait characteristics of male and female non-copers. METHODS Biomechanical data were collected before and after training on 12 male and nine female non-copers using standard motion analysis techniques. Subjects walked at a consistent, self-selected speed over an embedded force plate. Data from both limbs were post-processed and analyzed using a mixed model analysis of variance and minimal clinically important differences to compare the limb behaviors of men and women. FINDINGS Prior to training, only women demonstrated significant hip joint excursion asymmetry (ES=1.03; P=0.009). Minimal clinically important difference values showed that the involved limb of the women had reduced hip and knee flexion angles and moments, truncated knee excursions, and increased hip excursions when compared to their own uninvolved limb and the limbs of the male non-copers. Following training, only knee extensor moment values exceeded the minimal clinically important differences in women. INTERPRETATION Female non-copers demonstrated unique movement strategies following injury and perturbation training. Women may be a meaningful subgroup of non-copers, and future investigations should consider the effects of gender in the outcomes of non-copers.


BMC Musculoskeletal Disorders | 2013

Anterior cruciate ligament- specialized post-operative return-to-sports (ACL-SPORTS) training: a randomized control trial

Kathleen White; Stephanie Di Stasi; Angela H. Smith; Lynn Snyder-Mackler

BackgroundAnterior cruciate ligament reconstruction (ACLR) is standard practice for athletes that wish to return to high-level activities; however functional outcomes after ACLR are poor. Quadriceps strength weakness, abnormal movement patterns and below normal knee function is reported in the months and years after ACLR. Second ACL injuries are common with even worse outcomes than primary ACLR. Modifiable limb-to-limb asymmetries have been identified in individuals who re-injure after primary ACLR, suggesting a neuromuscular training program is needed to improve post-operative outcomes. Pre-operative perturbation training, a neuromuscular training program, has been successful at improving limb symmetry prior to surgery, though benefits are not lasting after surgery. Implementing perturbation training after surgery may be successful in addressing post-operative deficits that contribute to poor functional outcomes and second ACL injury risk.Methods/Design80 athletes that have undergone a unilateral ACLR and wish to return to level 1 or 2 activities will be recruited for this study and randomized to one of two treatment groups. A standard care group will receive prevention exercises, quadriceps strengthening and agility exercises, while the perturbation group will receive the same exercise program with the addition of perturbation training. The primary outcomes measures will include gait biomechanics, clinical and functional measures, and knee joint loading. Return to sport rates, return to pre-injury level of activity rates, and second injury rates will be secondary measures.DiscussionThe results of this ACL-Specialized Post-Operative Return To Sports (ACL-SPORTS) Training program will help clinicians to better determine an effective post-operative treatment program that will improve modifiable impairments that influence outcomes after ACLR.Trial registrationRandomized Control Trial NIH 5R01AR048212-07. ClinicalTrials.gov: NCT01773317


Journal of Orthopaedic & Sports Physical Therapy | 2015

Sex-Specific Gait Adaptations Prior to and up to 6 Months After Anterior Cruciate Ligament Reconstruction

Stephanie Di Stasi; Erin H. Hartigan; Lynn Snyder-Mackler

STUDY DESIGN Controlled longitudinal laboratory study. OBJECTIVES To compare sagittal plane gait mechanics of men and women before and up to 6 months after anterior cruciate ligament reconstruction (ACLR). BACKGROUND Aberrant gait patterns are ubiquitous after anterior cruciate ligament (ACL) rupture and persist after ACLR despite skilled physical therapy. Sex influences postoperative function and second-ACL injury risk, but its influence on gait adaptations after injury has not been investigated. METHODS Sagittal plane knee and hip joint excursions during midstance and internal knee and hip extension moments at peak knee flexion were collected in 12 women and 27 men using 3-D gait analysis before (screening) and after preoperative physical therapy (presurgery), and 6 months after ACLR (6 months postsurgery). Repeated-measures analysis-of-variance models were used to determine whether limb asymmetries changed differently over time in men and women. RESULTS Significant time-by-limb-by-sex interactions were identified for hip and knee excursions and internal knee extension moments (P ≤.007). Both sexes demonstrated smaller knee excursions on the involved limb compared to the uninvolved limb at each time point (P ≤.007), but only women demonstrated a decrease in the involved knee excursion from presurgery to 6 months postsurgery (P = .03). Women also demonstrated smaller hip excursions (P<.001) and internal knee extension moments (P = .005) on the involved limb compared to the uninvolved limb at 6 months postsurgery. Men demonstrated smaller hip excursions and knee moments on the involved limb compared to the uninvolved limb (P<.001) regardless of time. CONCLUSION The persistence of limb asymmetries in men and women 6 months after ACLR indicates that current postoperative rehabilitation efforts are inadequate for some individuals following ACLR.


American Journal of Sports Medicine | 2014

Knee Contact Force Asymmetries in Patients Who Failed Return-to-Sport Readiness Criteria 6 Months After Anterior Cruciate Ligament Reconstruction

Emily S. Gardinier; Stephanie Di Stasi; Kurt Manal; Thomas S. Buchanan; Lynn Snyder-Mackler

Background: After anterior cruciate ligament (ACL) injury, contact forces are decreased in the injured knee when compared with the uninjured knee. The persistence of contact force asymmetries after ACL reconstruction may increase the risk of reinjury and may play an important role in the development of knee osteoarthritis in these patients. Functional performance may also be useful in identifying patients who demonstrate potentially harmful joint contact force asymmetries after ACL reconstruction. Hypothesis: Knee joint contact force asymmetries would be present during gait after ACL reconstruction, and performance on a specific set of validated return-to-sport (RTS) readiness criteria would discriminate between those who demonstrated contact force asymmetries and those who did not. Study Design: Descriptive laboratory study. Methods: A total of 29 patients with ACL ruptures participated in gait analysis and RTS readiness testing 6 months after reconstruction. Muscle and joint contact forces were estimated using an electromyography (EMG)–driven musculoskeletal model of the knee. The magnitude of typical limb asymmetry in uninjured controls was used to define limits of meaningful limb asymmetry in patients after ACL reconstruction. The RTS testing included isometric quadriceps strength testing, 4 unilateral hop tests, and 2 self-report questionnaires. Paired t tests were used to assess limb symmetry for peak medial and tibiofemoral contact forces in all patients, and a mixed-design analysis of variance was used to analyze the effect of passing or failing RTS testing on contact force asymmetry. Results: Among all patients, neither statistically significant nor meaningful contact force asymmetries were identified. However, patients who failed RTS testing exhibited meaningful contact force asymmetries, with tibiofemoral contact force being significantly lower for the involved knee. Conversely, patients who passed RTS testing exhibited neither significant nor meaningful contact force asymmetries. Conclusion: Joint contact force asymmetries during gait are present in some patients 6 months after ACL reconstruction. Patients who demonstrated poor functional performance on RTS readiness testing exhibited significant and meaningful contact force asymmetries. Clinical Relevance: When assessing all patients together, variability in the functional status obscured significant and meaningful differences in contact force asymmetry in patients 6 months after ACL reconstruction. These specific RTS readiness criteria appear to differentiate between those who demonstrate joint contact force symmetry after ACL reconstruction and those who do not.

Collaboration


Dive into the Stephanie Di Stasi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory D. Myer

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim D. Barber Foss

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. DiCesare

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge