Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Gras is active.

Publication


Featured researches published by Stephanie Gras.


Nature | 2012

Immune self-reactivity triggered by drug-modified HLA-peptide repertoire

Patricia T. Illing; Julian P. Vivian; Nadine L. Dudek; Lyudmila Kostenko; Zhenjun Chen; Mandvi Bharadwaj; John J. Miles; Lars Kjer-Nielsen; Stephanie Gras; Nicholas A. Williamson; Scott R. Burrows; Anthony W. Purcell; Jamie Rossjohn; James McCluskey

Human leukocyte antigens (HLAs) are highly polymorphic proteins that initiate immunity by presenting pathogen-derived peptides to T cells. HLA polymorphisms mostly map to the antigen-binding cleft, thereby diversifying the repertoire of self-derived and pathogen-derived peptide antigens selected by different HLA allotypes. A growing number of immunologically based drug reactions, including abacavir hypersensitivity syndrome (AHS) and carbamazepine-induced Stevens–Johnson syndrome (SJS), are associated with specific HLA alleles. However, little is known about the underlying mechanisms of these associations, including AHS, a prototypical HLA-associated drug reaction occurring exclusively in individuals with the common histocompatibility allele HLA-B*57:01, and with a relative risk of more than 1,000 (refs 6, 7). We show that unmodified abacavir binds non-covalently to HLA-B*57:01, lying across the bottom of the antigen-binding cleft and reaching into the F-pocket, where a carboxy-terminal tryptophan typically anchors peptides bound to HLA-B*57:01. Abacavir binds with exquisite specificity to HLA-B*57:01, changing the shape and chemistry of the antigen-binding cleft, thereby altering the repertoire of endogenous peptides that can bind HLA-B*57:01. In this way, abacavir guides the selection of new endogenous peptides, inducing a marked alteration in ‘immunological self’. The resultant peptide-centric ‘altered self’ activates abacavir-specific T-cells, thereby driving polyclonal CD8 T-cell activation and a systemic reaction manifesting as AHS. We also show that carbamazepine, a widely used anti-epileptic drug associated with hypersensitivity reactions in HLA-B*15:02 individuals, binds to this allotype, producing alterations in the repertoire of presented self peptides. Our findings simultaneously highlight the importance of HLA polymorphism in the evolution of pharmacogenomics and provide a general mechanism for some of the growing number of HLA-linked hypersensitivities that involve small-molecule drugs.


Annual Review of Immunology | 2015

T Cell Antigen Receptor Recognition of Antigen-Presenting Molecules

Jamie Rossjohn; Stephanie Gras; John J. Miles; Stephen J. Turner; Dale I. Godfrey; James McCluskey

The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.


Immunity | 2009

T cell allorecognition via molecular mimicry.

Whitney A. Macdonald; Zhenjun Chen; Stephanie Gras; Julia K. Archbold; Fleur E. Tynan; Craig S. Clements; Mandvi Bharadwaj; Lars Kjer-Nielsen; Philippa M. Saunders; Matthew C. J. Wilce; Fran Crawford; Brian Stadinsky; David C. Jackson; Andrew G. Brooks; Anthony W. Purcell; John W. Kappler; Scott R. Burrows; Jamie Rossjohn; James McCluskey

T cells often alloreact with foreign human leukocyte antigens (HLA). Here we showed the LC13 T cell receptor (TCR), selected for recognition on self-HLA-B( *)0801 bound to a viral peptide, alloreacts with B44 allotypes (HLA-B( *)4402 and HLA-B( *)4405) bound to two different allopeptides. Despite extensive polymorphism between HLA-B( *)0801, HLA-B( *)4402, and HLA-B( *)4405 and the disparate sequences of the viral and allopeptides, the LC13 TCR engaged these peptide-HLA (pHLA) complexes identically, accommodating mimicry of the viral peptide by the allopeptide. The viral and allopeptides adopted similar conformations only after TCR ligation, revealing an induced-fit mechanism of molecular mimicry. The LC13 T cells did not alloreact against HLA-B( *)4403, and the single residue polymorphism between HLA-B( *)4402 and HLA-B( *)4403 affected the plasticity of the allopeptide, revealing that molecular mimicry was associated with TCR specificity. Accordingly, molecular mimicry that is HLA and peptide dependent is a mechanism for human T cell alloreactivity between disparate cognate and allogeneic pHLA complexes.


Immunity | 2009

Differential Recognition of CD1d-α-Galactosyl Ceramide by the Vβ8.2 and Vβ7 Semi-invariant NKT T Cell Receptors

Daniel G. Pellicci; Onisha Patel; Lars Kjer-Nielsen; Siew Siew Pang; Lucy C. Sullivan; Konstantinos Kyparissoudis; Andrew G. Brooks; Hugh H. Reid; Stephanie Gras; Isabelle S. Lucet; Ruide Koh; Mark J. Smyth; Thierry Mallevaey; Jennifer L. Matsuda; Laurent Gapin; James McCluskey; Dale I. Godfrey; Jamie Rossjohn

The semi-invariant natural killer T cell receptor (NKT TCR) recognizes CD1d-lipid antigens. Although the TCR alpha chain is typically invariant, the beta chain expression is more diverse, where three V beta chains are commonly expressed in mice. We report the structures of V alpha 14-V beta 8.2 and V alpha 14-V beta 7 NKT TCRs in complex with CD1d-alpha-galactosylceramide (alpha-GalCer) and the 2.5 A structure of the human NKT TCR-CD1d-alpha-GalCer complex. Both V beta 8.2 and V beta 7 NKT TCRs and the human NKT TCR ligated CD1d-alpha-GalCer in a similar manner, highlighting the evolutionarily conserved interaction. However, differences within the V beta domains of the V beta 8.2 and V beta 7 NKT TCR-CD1d complexes resulted in altered TCR beta-CD1d-mediated contacts and modulated recognition mediated by the invariant alpha chain. Mutagenesis studies revealed the differing contributions of V beta 8.2 and V beta 7 residues within the CDR2 beta loop in mediating contacts with CD1d. Collectively we provide a structural basis for the differential NKT TCR V beta usage in NKT cells.


Nature | 2011

Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B

Julian P. Vivian; Renee C Duncan; Richard M. Berry; Geraldine M. O'Connor; Hugh H. Reid; Travis Beddoe; Stephanie Gras; Philippa M. Saunders; Maya A Olshina; Jacqueline M. L. Widjaja; Christopher M. Harpur; Jie Lin; Sebastien Maloveste; David A. Price; Bernard A. P. Lafont; Daniel W. McVicar; Craig S. Clements; Andrew G. Brooks; Jamie Rossjohn

Members of the killer cell immunoglobulin-like receptor (KIR) family, a large group of polymorphic receptors expressed on natural killer (NK) cells, recognize particular peptide-laden human leukocyte antigen (pHLA) class I molecules and have a pivotal role in innate immune responses. Allelic variation and extensive polymorphism within the three-domain KIR family (KIR3D, domains D0–D1–D2) affects pHLA binding specificity and is linked to the control of viral replication and the treatment outcome of certain haematological malignancies. Here we describe the structure of a human KIR3DL1 receptor bound to HLA-B*5701 complexed with a self-peptide. KIR3DL1 clamped around the carboxy-terminal end of the HLA-B*5701 antigen-binding cleft, resulting in two discontinuous footprints on the pHLA. First, the D0 domain, a distinguishing feature of the KIR3D family, extended towards β2-microglobulin and abutted a region of the HLA molecule with limited polymorphism, thereby acting as an ‘innate HLA sensor’ domain. Second, whereas the D2–HLA-B*5701 interface exhibited a high degree of complementarity, the D1–pHLA-B*5701 contacts were suboptimal and accommodated a degree of sequence variation both within the peptide and the polymorphic region of the HLA molecule. Although the two-domain KIR (KIR2D) and KIR3DL1 docked similarly onto HLA-C and HLA-B respectively, the corresponding D1-mediated interactions differed markedly, thereby providing insight into the specificity of KIR3DL1 for discrete HLA-A and HLA-B allotypes. Collectively, in association with extensive mutagenesis studies at the KIR3DL1–pHLA-B*5701 interface, we provide a framework for understanding the intricate interplay between peptide variability, KIR3D and HLA polymorphism in determining the specificity requirements of this essential innate interaction that is conserved across primate species.


Nature Immunology | 2013

CD1d-lipid antigen recognition by the γδ TCR

Adam P. Uldrich; Jérôme Le Nours; Daniel G. Pellicci; Nicholas A. Gherardin; Kristy G McPherson; R.T. Lim; Onisha Patel; Travis Beddoe; Stephanie Gras; Jamie Rossjohn; Dale I. Godfrey

The T cell repertoire comprises αβ and γδ T cell lineages. Although it is established how αβ T cell antigen receptors (TCRs) interact with antigen presented by antigen-presenting molecules, this is unknown for γδ TCRs. We describe a population of human Vδ1+ γδ T cells that exhibit autoreactivity to CD1d and provide a molecular basis for how a γδ TCR binds CD1d–α-galactosylceramide (α-GalCer). The γδ TCR docked orthogonally, over the A′ pocket of CD1d, in which the Vδ1-chain, and in particular the germ line–encoded CDR1δ loop, dominated interactions with CD1d. The TCR γ-chain sat peripherally to the interface, with the CDR3γ loop representing the principal determinant for α-GalCer specificity. Accordingly, we provide insight into how a γδ TCR binds specifically to a lipid-loaded antigen-presenting molecule.


Nature Immunology | 2013

A conserved human T cell population targets mycobacterial antigens presented by CD1b

Ildiko Van Rhijn; Anne Kasmar; Annemieke de Jong; Stephanie Gras; Mugdha Bhati; Marieke E. Doorenspleet; Niek de Vries; Dale I. Godfrey; John D. Altman; Wilco de Jager; Jamie Rossjohn; D. Branch Moody

Human T cell antigen receptors (TCRs) pair in millions of combinations to create complex and unique T cell repertoires for each person. Through the use of tetramers to analyze TCRs reactive to the antigen-presenting molecule CD1b, we detected T cells with highly stereotyped TCR α-chains present among genetically unrelated patients with tuberculosis. The germline-encoded, mycolyl lipid–reactive (GEM) TCRs had an α-chain bearing the variable (V) region TRAV1-2 rearranged to the joining (J) region TRAJ9 with few nontemplated (N)-region additions. Analysis of TCRs by high-throughput sequencing, binding and crystallography showed linkage of TCRα sequence motifs to high-affinity recognition of antigen. Thus, the CD1-reactive TCR repertoire is composed of at least two compartments: high-affinity GEM TCRs, and more-diverse TCRs with low affinity for CD1b-lipid complexes. We found high interdonor conservation of TCRs that probably resulted from selection by a nonpolymorphic antigen-presenting molecule and an immunodominant antigen.


Nature Structural & Molecular Biology | 2013

Chromatin signatures and retrotransposon profiling in mouse embryos reveal regulation of LINE-1 by RNA

Anas Fadloun; Stephanie Gras; Bernard Jost; Céline Ziegler-Birling; Hazuki Takahashi; Eduardo Gorab; Piero Carninci; Maria-Elena Torres-Padilla

How a more plastic chromatin state is maintained and reversed during development is unknown. Heterochromatin-mediated silencing of repetitive elements occurs in differentiated cells. Here, we used repetitive elements, including retrotransposons, as model loci to address how and when heterochromatin forms during development. RNA sequencing throughout early mouse embryogenesis revealed that repetitive-element expression is dynamic and stage specific, with most repetitive elements becoming repressed before implantation. We show that LINE-1 and IAP retrotransposons become reactivated from both parental genomes after fertilization. Chromatin immunoprecipitation for H3K4me3 and H3K9me3 in 2- and 8-cell embryos indicates that their developmental silencing follows loss of activating marks rather than acquisition of conventional heterochromatic marks. Furthermore, short LINE-1 RNAs regulate LINE-1 transcription in vivo. Our data indicate that reprogramming after mammalian fertilization comprises a robust transcriptional activation of retrotransposons and that repetitive elements are initially regulated through RNA.


Immunity | 2013

A Molecular Basis for the Control of Preimmune Escape Variants by HIV-Specific CD8(+) T Cells.

Kristin Ladell; Masao Hashimoto; Maria Candela Iglesias; Pascal G. Wilmann; James Edward McLaren; Stephanie Gras; Takayuki Chikata; Nozomi Kuse; Solène Fastenackels; Emma Gostick; John S. Bridgeman; Vanessa Venturi; Zaïna Aït Arkoub; Henri Agut; David van Bockel; Jorge R. Almeida; Laurence Meyer; Alain Venet; Masafumi Takiguchi; Jamie Rossjohn; David A. Price; Victor Appay

The capacity of the immune system to adapt to rapidly evolving viruses is a primary feature of effective immunity, yet its molecular basis is unclear. Here, we investigated protective HIV-1-specific CD8+ T cell responses directed against the immunodominant p24 Gag-derived epitope KK10 (KRWIILGLNK263-272) presented by human leukocyte antigen (HLA)-B∗2705. We found that cross-reactive CD8+ T cell clonotypes were mobilized to counter the rapid emergence of HIV-1 variants that can directly affect T cell receptor (TCR) recognition. These newly recruited clonotypes expressed TCRs that engaged wild-type and mutant KK10 antigens with similar affinities and almost identical docking modes, thereby accounting for their antiviral efficacy in HLA-B∗2705+ individuals. A protective CD8+ T cell repertoire therefore encompasses the capacity to control TCR-accessible mutations, ultimately driving the development of more complex viral escape variants that disrupt antigen presentation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability.

Scott R. Burrows; Zhenjun Chen; Julia K. Archbold; Fleur E. Tynan; Travis Beddoe; Lars Kjer-Nielsen; John J. Miles; Rajiv Khanna; Denis J. Moss; Yu Chih Liu; Stephanie Gras; Lyudmila Kostenko; Rebekah M. Brennan; Craig S. Clements; Andrew G. Brooks; Anthony W. Purcell; James McCluskey; Jamie Rossjohn

αβ T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR–pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR–pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR–pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

Collaboration


Dive into the Stephanie Gras's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott R. Burrows

QIMR Berghofer Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenjun Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Bernard Jost

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge