Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie J. Peacock is active.

Publication


Featured researches published by Stephanie J. Peacock.


Ecological Applications | 2011

Fish farms, parasites, and predators: implications for salmon population dynamics

Martin Krkošek; Brendan M. Connors; Helen Ford; Stephanie J. Peacock; Paul Mages; Jennifer S. Ford; Alexandra Morton; John P. Volpe; Ray Hilborn; Lawrence M. Dill; Mark A. Lewis

For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an important component of salmon-louse dynamics and has implications for estimating mortality, reducing infection, and developing conservation policy.


Ecological Applications | 2013

Cessation of a salmon decline with control of parasites

Stephanie J. Peacock; Martin Krkošek; Stan Proboszcz; Craig Orr; Mark A. Lewis

The resilience of coastal social-ecological systems may depend on adaptive responses to aquaculture disease outbreaks that can threaten wild and farm fish. A nine-year study of parasitic sea lice (Lepeophtheirus salmonis) and pink salmon (Oncorhynchus gorbuscha) from Pacific Canada indicates that adaptive changes in parasite management on salmon farms have yielded positive conservation outcomes. After four years of sea lice epizootics and wild salmon population decline, parasiticide application on salmon farms was adapted to the timing of wild salmon migrations. Winter treatment of farm fish with parasiticides, prior to the out-migration of wild juvenile salmon, has reduced epizootics of wild salmon without significantly increasing the annual number of treatments. Levels of parasites on wild juvenile salmon significantly influence the growth rate of affected salmon populations, suggesting that these changes in management have had positive outcomes for wild salmon populations. These adaptive changes have not occurred through formal adaptive management, but rather, through multi-stakeholder processes arising from a contentious scientific and public debate. Despite the apparent success of parasite control on salmon farms in the study region, there remain concerns about the long-term sustainability of this approach because of the unknown ecological effects of parasticides and the potential for parasite resistance to chemical treatments.


PLOS ONE | 2013

Modeling Parasite Dynamics on Farmed Salmon for Precautionary Conservation Management of Wild Salmon

Luke A. Rogers; Stephanie J. Peacock; Peter McKenzie; Sharon DeDominicis; Simon R. M. Jones; Peter Chandler; Michael G. G. Foreman; Crawford W. Revie; Martin Krkošek

Conservation management of wild fish may include fish health management in sympatric populations of domesticated fish in aquaculture. We developed a mathematical model for the population dynamics of parasitic sea lice (Lepeophtheirus salmonis) on domesticated populations of Atlantic salmon (Salmo salar) in the Broughton Archipelago region of British Columbia. The model was fit to a seven-year dataset of monthly sea louse counts on farms in the area to estimate population growth rates in relation to abiotic factors (temperature and salinity), local host density (measured as cohort surface area), and the use of a parasiticide, emamectin benzoate, on farms. We then used the model to evaluate management scenarios in relation to policy guidelines that seek to keep motile louse abundance below an average three per farmed salmon during the March–June juvenile wild Pacific salmon (Oncorhynchus spp.) migration. Abiotic factors mediated the duration of effectiveness of parasiticide treatments, and results suggest treatment of farmed salmon conducted in January or early February minimized average louse abundance per farmed salmon during the juvenile wild salmon migration. Adapting the management of parasites on farmed salmon according to migrations of wild salmon may therefore provide a precautionary approach to conserving wild salmon populations in salmon farming regions.


Philosophical Transactions of the Royal Society B | 2016

Lessons from sea louse and salmon epidemiology

Maya L. Groner; Luke A. Rogers; Andrew W. Bateman; Brendan M. Connors; L. Neil Frazer; Sean C. Godwin; Martin Krkošek; Mark A. Lewis; Stephanie J. Peacock; Erin E. Rees; Crawford W. Revie; Ulrike E. Schlägel

Effective disease management can benefit from mathematical models that identify drivers of epidemiological change and guide decision-making. This is well illustrated in the host–parasite system of sea lice and salmon, which has been modelled extensively due to the economic costs associated with sea louse infections on salmon farms and the conservation concerns associated with sea louse infections on wild salmon. Consequently, a rich modelling literature devoted to sea louse and salmon epidemiology has been developed. We provide a synthesis of the mathematical and statistical models that have been used to study the epidemiology of sea lice and salmon. These studies span both conceptual and tactical models to quantify the effects of infections on host populations and communities, describe and predict patterns of transmission and dispersal, and guide evidence-based management of wild and farmed salmon. As aquaculture production continues to increase, advances made in modelling sea louse and salmon epidemiology should inform the sustainable management of marine resources.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Can reduced predation offset negative effects of sea louse parasites on chum salmon

Stephanie J. Peacock; Brendan M. Connors; Martin Krkošek; James R. Irvine; Mark A. Lewis

The impact of parasites on hosts is invariably negative when considered in isolation, but may be complex and unexpected in nature. For example, if parasites make hosts less desirable to predators then gains from reduced predation may offset direct costs of being parasitized. We explore these ideas in the context of sea louse infestations on salmon. In Pacific Canada, sea lice can spread from farmed salmon to migrating juvenile wild salmon. Low numbers of sea lice can cause mortality of juvenile pink and chum salmon. For pink salmon, this has resulted in reduced productivity of river populations exposed to salmon farming. However, for chum salmon, we did not find an effect of sea louse infestations on productivity, despite high statistical power. Motivated by this unexpected result, we used a mathematical model to show how a parasite-induced shift in predation pressure from chum salmon to pink salmon could offset negative direct impacts of sea lice on chum salmon. This shift in predation is proposed to occur because predators show an innate preference for pink salmon prey. This preference may be more easily expressed when sea lice compromise juvenile salmon hosts, making them easier to catch. Our results indicate how the ecological context of host–parasite interactions may dampen, or even reverse, the expected impact of parasites on host populations.


Canadian Journal of Fisheries and Aquatic Sciences | 2012

Metrics and sampling designs for detecting trends in the distribution of spawning Pacific salmon (Oncorhynchus spp.)

Stephanie J. Peacock; Carrie A. Holt

The distribution of individuals among populations and in space may contribute to their resilience under environ- mental variability. Changes in distribution may indicate the loss of genetically distinct subpopulations, the deterioration of habitat capacity, or both. The distribution of Pacific salmon (Oncorhynchus spp.) among spawning locations has recently been recognized as an important component of status assessment by USA and Canadian management agencies, but metrics of spawning distribution have not been rigorously evaluated. We evaluated three metrics of spawning distribution and four sampling designs for their ability to detect simulated contractions in the production of coho salmon (Oncorhynchus kisutch). We simulated population dynamics at 100 sites using a spawner-recruit model that incorporated natural variability in recruit- ment, age-at-maturity, dispersal, and measurement error in observations of abundance. Sensitivity analyses revealed that high observation error and straying of spawners from their natal streams may mask changes in distribution. Furthermore, monitoring only sites with high spawner abundance, as is often practiced, failed to capture the simulated contraction of pro- duction, emphasizing the importance of matching monitoring programs with assessment objectives.


Ecosphere | 2015

Parasitism and food web dynamics of juvenile Pacific salmon

Stephanie J. Peacock; Martin Krkošek; Andrew W. Bateman; Mark A. Lewis

There is an increasing realization of the diverse mechanisms by which parasites and pathogens influence the dynamics of host populations and communities. In multi-host systems, parasites may mediate food web dynamics with unexpected outcomes for host populations. Models have been used to explore the potential consequences of interactions between hosts, parasites and predators, but connections between theory and data are rare. Here, we consider sea louse parasites (Lepeophtheirus salmonis), which directly increase mortality of juvenile salmon hosts (Oncorhynchus spp.). We use mathematical models and field-based experiments to investigate how the indirect effects of parasitism via predation influence mortality of sympatric juvenile chum salmon (O. keta) and pink salmon (O. gorbuscha). Our experiments show that coho salmon predators (O. kisutch) selectively prey on pink salmon and on parasitized prey. Preference for pink salmon increased slightly when prey were parasitized by sea lice, although there was considerable uncertainty regarding this result. Despite this uncertainty, we show that even the small increase in preference that we observed may be biologically significant. We calculate a critical threshold of pink salmon abundance above which chum salmon may experience a parasite-mediated release from predation as predation shifts towards preferred prey species. This work highlights the importance of considering community interactions, such as predation, when assessing the risk that emerging parasites and pathogens pose to wildlife populations.


Conservation Physiology | 2017

Qiviut cortisol in muskoxen as a potential tool for informing conservation strategies

Juliette Di Francesco; Nora Navarro-Gonzalez; Katherine E. Wynne-Edwards; Stephanie J. Peacock; Lisa-Marie Leclerc; Matilde Tomaselli; Tracy Davison; Anja M. Carlsson; Susan J. Kutz

Muskoxen are increasingly exposed to multiple stressors that may impact their health and fitness. We measured stress hormones in their qiviut (wooly undercoat), and found differences across seasons, years and between sexes. Qiviut cortisol is a promising tool for guiding muskox conservation in a rapidly changing Arctic.


Theoretical Ecology | 2016

The dynamics of coupled populations subject to control

Stephanie J. Peacock; Andrew W. Bateman; Martin Krkošek; Mark A. Lewis

The dynamics of coupled populations have mostly been studied in the context of metapopulation viability with application to, for example, species at risk. However, when considering pests and pathogens, eradication, not persistence, is often the end goal. Humans may intervene to control nuisance populations, resulting in reciprocal interactions between the human and natural systems that can lead to unexpected dynamics. The incidence of these human-natural couplings has been increasing, hastening the need to better understand the emergent properties of such systems in order to predict and manage outbreaks of pests and pathogens. For example, the success of the growing aquaculture industry depends on our ability to manage pathogens and maintain a healthy environment for farmed and wild fish. We developed a model for the dynamics of connected populations subject to control, motivated by sea louse parasites that can disperse among salmon farms. The model includes exponential population growth with a forced decline when populations reach a threshold, representing control interventions. Coupling two populations with equal growth rates resulted in phase locking or synchrony in their dynamics. Populations with different growth rates had different periods of oscillation, leading to quasiperiodic dynamics when coupled. Adding small amounts of stochasticity destabilized quasiperiodic cycles to chaos, while stochasticity was damped for periodic or stable dynamics. Our analysis suggests that strict treatment thresholds, although well intended, can complicate parasite dynamics and hinder control efforts. Synchronizing populations via coordinated management among farms leads to more effective control that is required less frequently. Our model is simple and generally applicable to other systems where dispersal affects the management of pests and pathogens.


PLOS Biology | 2018

Empirical evidence that metabolic theory describes the temperature dependency of within-host parasite dynamics

Devin Kirk; Natalie T. Jones; Stephanie J. Peacock; Jessica Phillips; Péter K. Molnár; Martin Krkošek; Pepijn Luijckx

The complexity of host–parasite interactions makes it difficult to predict how host–parasite systems will respond to climate change. In particular, host and parasite traits such as survival and virulence may have distinct temperature dependencies that must be integrated into models of disease dynamics. Using experimental data from Daphnia magna and a microsporidian parasite, we fitted a mechanistic model of the within-host parasite population dynamics. Model parameters comprising host aging and mortality, as well as parasite growth, virulence, and equilibrium abundance, were specified by relationships arising from the metabolic theory of ecology. The model effectively predicts host survival, parasite growth, and the cost of infection across temperature while using less than half the parameters compared to modeling temperatures discretely. Our results serve as a proof of concept that linking simple metabolic models with a mechanistic host–parasite framework can be used to predict temperature responses of parasite population dynamics at the within-host level.

Collaboration


Dive into the Stephanie J. Peacock's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Crawford W. Revie

University of Prince Edward Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge