Stephanie K. Yanow
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie K. Yanow.
Journal of Clinical Microbiology | 2009
Sandra Shokoples; Momar Ndao; Kinga Kowalewska-Grochowska; Stephanie K. Yanow
ABSTRACT The implementation of real-time PCR for the diagnosis of malaria has been hampered by poor sensitivity for the detection of mixed infections. We have optimized a method that enhances the sensitivity of detection of minor species in mixed infections within a single multiplex reaction. Our assay uses species-specific forward primers in combination with a conserved reverse primer and largely overcomes primer competition for the minor species DNA. With a blind panel of clinical samples, we successfully identified the species in 13/16 mixed infections. This assay was further validated with 91 blood samples and demonstrated a specificity and sensitivity for single infections of 100% compared with nested PCR as the “gold standard.” This test has been implemented for routine confirmation of malaria species in Alberta, Canada. In comparison with species identification by microscopy, the real-time PCR test demonstrated greater sensitivity for the identification of species causing low-level and mixed infections and for the discrimination of Plasmodium species other than Plasmodium falciparum. Our experience supports a role for real-time PCR in the identification of malarial species in conjunction with microscopy.
Journal of Clinical Microbiology | 2009
Kanti Pabbaraju; Sallene Wong; Anita A. Wong; Greg D. Appleyard; Linda Chui; Xiao-Li Pang; Stephanie K. Yanow; Kevin Fonseca; Bonita E. Lee; Julie D. Fox; Jutta K. Preiksaitis
ABSTRACT Tracking novel influenza viruses which have the potential to cause pandemics, such as the pandemic (H1N1) 2009 virus, is a public health priority. Pandemic (H1N1) 2009 virus was first identified in Mexico in April 2009 and spread worldwide over a short period of time. Well-validated diagnostic tools that are rapid, sensitive, and specific for the detection and tracking of this virus are needed. Three real-time reverse transcription PCR (RT-PCR) assays for the amplification and detection of pandemic (H1N1) 2009 virus were developed, and their performance characteristics were compared with those of other published diagnostic assays. Thirty-nine samples confirmed to be positive for pandemic (H1N1) 2009 virus from Alberta, Canada, and six additional samples that were positive for influenza A virus but that were not typeable by using published seasonal influenza H1/H3 virus assays were available for this validation. Amplification and direct sequencing of the products was considered the “gold standard” for case identification. The new assays were sensitive and able to reproducibly detect virus in a 10−6 dilution of 4 × 106 50% tissue culture infective doses/ml when 5 μl was used as the template. They showed 100% specificity and did not cross-react with other respiratory viruses or seasonal influenza A virus subtypes. The coefficient of variation in crossing cycle threshold values for the detection of different template concentrations of pandemic (H1N1) 2009 virus was ≤3.13%, showing good reproducibility. The assays had a wide dynamic range for the detection of pandemic (H1N1) 2009 virus and utilized testing platforms appropriate for high diagnostic throughput with rapid turnaround times. We developed and validated these real-time PCR procedures with the goal that they will be useful for diagnosis and surveillance of pandemic (H1N1) 2009 virus. These findings will contribute to the informed management of this novel virus.
Journal of Clinical Investigation | 2013
Michael F. Good; Jennifer M. Reiman; I. Bibiana Rodriguez; Koichi Ito; Stephanie K. Yanow; Ibrahim Mustafa El-Deeb; Michael R. Batzloff; Danielle I. Stanisic; Christian R. Engwerda; Terry W. Spithill; Stephen L. Hoffman; Moses Lee; Virginia McPhun
Vaccine development for the blood stages of malaria has focused on the induction of antibodies to parasite surface antigens, most of which are highly polymorphic. An alternate strategy has evolved from observations that low-density infections can induce antibody-independent immunity to different strains. To test this strategy, we treated parasitized red blood cells from the rodent parasite Plasmodium chabaudi with seco-cyclopropyl pyrrolo indole analogs. These drugs irreversibly alkylate parasite DNA, blocking their ability to replicate. After administration in mice, DNA from the vaccine could be detected in the blood for over 110 days and a single vaccination induced profound immunity to different malaria parasite species. Immunity was mediated by CD4+ T cells and was dependent on the red blood cell membrane remaining intact. The human parasite, Plasmodium falciparum, could also be attenuated by treatment with seco-cyclopropyl pyrrolo indole analogs. These data demonstrate that vaccination with chemically attenuated parasites induces protective immunity and provide a compelling rationale for testing a blood-stage parasite-based vaccine targeting human Plasmodium species.
Vaccine | 2008
Lisa A. Purcell; Kurt A. Wong; Stephanie K. Yanow; Moses Lee; Terry W. Spithill; Ana Rodriguez
Vaccination with Plasmodium sporozoites attenuated by irradiation or genetic manipulation induces a protective immune response in rodent malaria models. Recently, vaccination with chemically attenuated P. berghei sporozoites (CAS) has also been shown to elicit sterile immunity in mice. Here we show that vaccination with CAS of P. yoelii also protects against homologous infection and that a P. berghei CAS vaccine cross protects against heterologous challenge with P. yoelii sporozoites. Vaccination with P. yoelii or P. berghei CAS induced parasite-specific antibodies and IFN-gamma-producing CD8(+) T cells at levels not significantly different from radiation-attenuated sporozoites. Our findings provide an initial characterization of the immune response generated by CAS vaccination and suggest that this attenuation process could be used in the production of an effective cross-protective liver stage vaccine for malaria.
Infection and Immunity | 2008
Lisa A. Purcell; Stephanie K. Yanow; Moses Lee; Terry W. Spithill; Ana Rodriguez
ABSTRACT Radiation and genetic attenuation of Plasmodium sporozoites are two approaches for whole-organism vaccines that protect against malaria. We evaluated chemical attenuation of sporozoites as an alternative vaccine strategy. Sporozoites were treated with the DNA sequence-specific alkylating agent centanamycin, a compound that significantly affects blood stage parasitemia and transmission of murine malaria and also inhibits Plasmodium falciparum growth in vitro. Here we show that treatment of Plasmodium berghei sporozoites with centanamycin impaired parasite function both in vitro and in vivo. The infection of hepatocytes by sporozoites in vitro was significantly reduced, and treated parasites showed arrested liver stage development. Inoculation of mice with sporozoites that were treated in vitro with centanamycin failed to produce blood stage infections. Furthermore, BALB/c and C57BL/6 mice vaccinated with treated sporozoites were protected against subsequent challenge with wild-type sporozoites. Our findings demonstrate that chemically attenuated sporozoites could be a viable alternative for the production of an effective liver stage vaccine for malaria.
Malaria Journal | 2010
Paul Cs Divis; Sandra Shokoples; Balbir Singh; Stephanie K. Yanow
BackgroundThe misdiagnosis of Plasmodium knowlesi by microscopy has prompted a re-evaluation of the geographic distribution, prevalence and pathogenesis of this species using molecular diagnostic tools. In this report, a specific probe for P. knowlesi, that can be used in a previously described TaqMan real-time PCR assay for detection of Plasmodium spp., and Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae and Plasmodium ovale, was designed and validated against clinical samples.MethodsA hydrolysis probe for a real-time PCR assay was designed to recognize a specific DNA sequence within the P. knowlesi small subunit ribosomal RNA gene. The sensitivity, linearity and specificity of the assay were determined using plasmids containing P. knowlesi DNA and genomic DNA of P. falciparum, P. knowlesi, P. malariae, P. ovale and P. vivax isolated from clinical samples. DNA samples of the simian malaria parasites Plasmodium cynomolgi and Plasmodium inui that can infect humans under experimental conditions were also examined together with human DNA samples.ResultsAnalytical sensitivity of the P. knowlesi-specific assay was 10 copies/μL and quantitation was linear over a range of 10-106 copies. The sensitivity of the assay is equivalent to nested PCR and P. knowlesi DNA was detected from all 40 clinical P. knowlesi specimens, including one from a patient with a parasitaemia of three parasites/μL of blood. No cross-reactivity was observed with 67 Plasmodium DNA samples (31 P. falciparum, 23 P. vivax, six P. ovale, three P. malariae, one P. malariae/P. ovale, one P. falciparum/P. malariae, one P. inui and one P. cynomolgi) and four samples of human DNA.ConclusionsThis test demonstrated excellent sensitivity and specificity, and adds P. knowlesi to the repertoire of Plasmodium targets for the clinical diagnosis of malaria by real-time PCR assays. Furthermore, quantitation of DNA copy number provides a useful advantage over other molecular assays to investigate the correlation between levels of infection and the spectrum of disease.
PLOS Neglected Tropical Diseases | 2014
Andrew Taylor Bright; Micah J. Manary; Ryan Tewhey; Eliana Arango; Tina Wang; Nicholas J. Schork; Stephanie K. Yanow; Elizabeth A. Winzeler
Plasmodium vivax infects a hundred million people annually and endangers 40% of the worlds population. Unlike Plasmodium falciparum, P. vivax parasites can persist as a dormant stage in the liver, known as the hypnozoite, and these dormant forms can cause malaria relapses months or years after the initial mosquito bite. Here we analyze whole genome sequencing data from parasites in the blood of a patient who experienced consecutive P. vivax relapses over 33 months in a non-endemic country. By analyzing patterns of identity, read coverage, and the presence or absence of minor alleles in the initial polyclonal and subsequent monoclonal infections, we show that the parasites in the three infections are likely meiotic siblings. We infer that these siblings are descended from a single tetrad-like form that developed in the infecting mosquito midgut shortly after fertilization. In this natural cross we find the recombination rate for P. vivax to be 10 kb per centimorgan and we further observe areas of disequilibrium surrounding major drug resistance genes. Our data provide new strategies for studying multiclonal infections, which are common in all types of infectious diseases, and for distinguishing P. vivax relapses from reinfections in malaria endemic regions. This work provides a theoretical foundation for studies that aim to determine if new or existing drugs can provide a radical cure of P. vivax malaria.
Malaria Journal | 2011
Brian J. Taylor; Kimberly A. Martin; Eliana Arango; Olga Agudelo; Amanda Maestre; Stephanie K. Yanow
BackgroundReal-time PCR is a sensitive and specific method for the analysis of Plasmodium DNA. However, prior purification of genomic DNA from blood is necessary since PCR inhibitors and quenching of fluorophores from blood prevent efficient amplification and detection of PCR products.MethodsReagents designed to specifically overcome PCR inhibition and quenching of fluorescence were evaluated for real-time PCR amplification of Plasmodium DNA directly from blood. Whole blood from clinical samples and dried blood spots collected in the field in Colombia were tested.ResultsAmplification and fluorescence detection by real-time PCR were optimal with 40× SYBR® Green dye and 5% blood volume in the PCR reaction. Plasmodium DNA was detected directly from both whole blood and dried blood spots from clinical samples. The sensitivity and specificity ranged from 93-100% compared with PCR performed on purified Plasmodium DNA.ConclusionsThe methodology described facilitates high-throughput testing of blood samples collected in the field by fluorescence-based real-time PCR. This method can be applied to a broad range of clinical studies with the advantages of immediate sample testing, lower experimental costs and time-savings.
Sexually Transmitted Diseases | 2010
Irene Martin; Raymond S. W. Tsang; Karen Sutherland; Barbara Anderson; Ron Read; Colleen Roy; Stephanie K. Yanow; Kevin Fonseca; Wanda White; Kami Kandola; Ettienne Kouadjo; Ameeta E. Singh
Background: Resurgence of syphilis in Canada and worldwide requires laboratories to update their methods for molecular epidemiology investigation and surveillance. This study utilizes polymerase chain reaction diagnostic tests for syphilis, identifies macrolide resistance, and uses a molecular typing system to characterize Treponema pallidum clinical strains causing syphilis in Alberta and Northwest Territories, Canada. Methods: In total 449 specimens including genital swabs, whole blood, sera, and cerebrospinal fluid were obtained from 374 patients with suspect syphilis in Alberta and Northwest Territories. Molecular subtyping was based on genetic characterization of treponemal repeat genes, arp and tpr. Detection of macrolide resistance was accomplished by identification of the 23S rRNA gene mutation associated with the resistance pattern. Results: Forty-nine specimens obtained from 43 patients were found to be positive for T. pallidum DNA using bmp, tpp47 and polA polymerase chain reaction assays. Four molecular subtypes were identified, with one type, 14d, accounting for 70% of all cases and 83% of typeable strains. Seven patients (16%) were found to be infected by macrolide-resistant strains, of which 6 were men who have sex with men and 1 whose infection was acquired in China. Conclusions: A single molecular type of T. pallidum, characterized as 14d, caused the majority of the syphilis cases identified in this study. A more discriminatory typing method would be required to determine if these strains are clonal. Treatment of infectious syphilis with macrolide antibiotics should be restricted to patient populations where resistance is rare and clinical and serological follow up of patients is possible.
Malaria Journal | 2014
Brian J. Taylor; Anita Howell; Kimberly A. Martin; Dammika P. Manage; Walter Gordy; Stephanie D Campbell; Samantha Lam; A. Y. Jin; Spencer D. Polley; Roshini Samuel; Alexey Atrazhev; Alex Stickel; Josephine Birungi; Anthony K. Mbonye; Linda M. Pilarski; Jason P. Acker; Stephanie K. Yanow
BackgroundAccess to timely and accurate diagnostic tests has a significant impact in the management of diseases of global concern such as malaria. While molecular diagnostics satisfy this need effectively in developed countries, barriers in technology, reagent storage, cost and expertise have hampered the introduction of these methods in developing countries. In this study a simple, lab-on-chip PCR diagnostic was created for malaria that overcomes these challenges.MethodsThe platform consists of a disposable plastic chip and a low-cost, portable, real-time PCR machine. The chip contains a desiccated hydrogel with reagents needed for Plasmodium specific PCR. Chips can be stored at room temperature and used on demand by rehydrating the gel with unprocessed blood, avoiding the need for sample preparation. These chips were run on a custom-built instrument containing a Peltier element for thermal cycling and a laser/camera setup for amplicon detection.ResultsThis diagnostic was capable of detecting all Plasmodium species with a limit of detection for Plasmodium falciparum of 2 parasites/μL of blood. This exceeds the sensitivity of microscopy, the current standard for diagnosis in the field, by ten to fifty-fold. In a blind panel of 188 patient samples from a hyper-endemic region of malaria transmission in Uganda, the diagnostic had high sensitivity (97.4%) and specificity (93.8%) versus conventional real-time PCR. The test also distinguished the two most prevalent malaria species in mixed infections, P. falciparum and Plasmodium vivax. A second blind panel of 38 patient samples was tested on a streamlined instrument with LED-based excitation, achieving a sensitivity of 96.7% and a specificity of 100%.ConclusionsThese results describe the development of a lab-on-chip PCR diagnostic from initial concept to ready-for-manufacture design. This platform will be useful in front-line malaria diagnosis, elimination programmes, and clinical trials. Furthermore, test chips can be adapted to detect other pathogens for a differential diagnosis in the field. The flexibility, reliability, and robustness of this technology hold much promise for its use as a novel molecular diagnostic platform in developing countries.