Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Loomis is active.

Publication


Featured researches published by Stephanie Loomis.


PLOS Genetics | 2012

Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

Janey L. Wiggs; Brian L. Yaspan; Michael A. Hauser; Jae H. Kang; R. Rand Allingham; Lana M. Olson; Wael Abdrabou; Bao J. Fan; Dan Y. Wang; Wendy Brodeur; Donald L. Budenz; Joseph Caprioli; Andrew Crenshaw; Kristy Crooks; E. DelBono; Kimberly F. Doheny; David S. Friedman; Douglas E. Gaasterland; Terry Gaasterland; Cathy C. Laurie; Richard K. Lee; Paul R. Lichter; Stephanie Loomis; Yutao Liu; Felipe A. Medeiros; Catherine A. McCarty; Daniel B. Mirel; David C. Musch; Anthony Realini; Frank W. Rozsa

Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma.


Human Molecular Genetics | 2011

Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA

Janey L. Wiggs; Jae H. Kang; Brian L. Yaspan; Daniel B. Mirel; Cathy C. Laurie; Andrew Crenshaw; Wendy Brodeur; Stephanie M. Gogarten; Lana M. Olson; Wael Abdrabou; E. DelBono; Stephanie Loomis; Jonathan L. Haines; Louis R. Pasquale

Primary open-angle glaucoma (POAG) is a genetically complex common disease characterized by progressive optic nerve degeneration that results in irreversible blindness. Recently, a genome-wide association study (GWAS) for POAG in an Icelandic population identified significant associations with single nucleotide polymorphisms (SNPs) between the CAV1 and CAV2 genes on chromosome 7q31. In this study, we confirm that the identified SNPs are associated with POAG in our Caucasian US population and that specific haplotypes located in the CAV1/CAV2 intergenic region are associated with the disease. We also present data suggesting that associations with several CAV1/CAV2 SNPs are significant mostly in women.


Nature Genetics | 2014

Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma

Pirro G. Hysi; Ching-Yu Cheng; Henriet Springelkamp; Stuart MacGregor; Jessica N. Cooke Bailey; Robert Wojciechowski; Veronique Vitart; Abhishek Nag; Alex W. Hewitt; René Höhn; Cristina Venturini; Alireza Mirshahi; Wishal D. Ramdas; Gudmar Thorleifsson; Eranga N. Vithana; Chiea Chuen Khor; Arni B Stefansson; Jiemin Liao; Jonathan L. Haines; Najaf Amin; Ya Xing Wang; Philipp S. Wild; Ayse B Ozel; Jun Li; Brian W. Fleck; Tanja Zeller; Sandra E Staffieri; Yik-Ying Teo; Gabriel Cuellar-Partida; Xiaoyan Luo

Elevated intraocular pressure (IOP) is an important risk factor in developing glaucoma, and variability in IOP might herald glaucomatous development or progression. We report the results of a genome-wide association study meta-analysis of 18 population cohorts from the International Glaucoma Genetics Consortium (IGGC), comprising 35,296 multi-ancestry participants for IOP. We confirm genetic association of known loci for IOP and primary open-angle glaucoma (POAG) and identify four new IOP-associated loci located on chromosome 3q25.31 within the FNDC3B gene (P = 4.19 × 10−8 for rs6445055), two on chromosome 9 (P = 2.80 × 10−11 for rs2472493 near ABCA1 and P = 6.39 × 10−11 for rs8176693 within ABO) and one on chromosome 11p11.2 (best P = 1.04 × 10−11 for rs747782). Separate meta-analyses of 4 independent POAG cohorts, totaling 4,284 cases and 95,560 controls, showed that 3 of these loci for IOP were also associated with POAG.


Nature Genetics | 2016

Genome-wide association analysis identifies TXNRD2, ATXN2 and FOXC1 as susceptibility loci for primary open-angle glaucoma

Jessica N. Cooke Bailey; Stephanie Loomis; Jae H. Kang; R. Rand Allingham; Puya Gharahkhani; Chiea Chuen Khor; Kathryn P. Burdon; Hugues Aschard; Daniel I. Chasman; Robert P. Igo; Pirro G. Hysi; Craig A. Glastonbury; Allison E. Ashley-Koch; Murray H. Brilliant; Andrew Anand Brown; Donald L. Budenz; Alfonso Buil; Ching-Yu Cheng; Hyon K. Choi; William G. Christen; Gary C. Curhan; Immaculata De Vivo; John H. Fingert; Paul J. Foster; Charles S. Fuchs; Douglas E. Gaasterland; Terry Gaasterland; Alex W. Hewitt; Frank B. Hu; David J. Hunter

Primary open-angle glaucoma (POAG) is a leading cause of blindness worldwide. To identify new susceptibility loci, we performed meta-analysis on genome-wide association study (GWAS) results from eight independent studies from the United States (3,853 cases and 33,480 controls) and investigated the most significantly associated SNPs in two Australian studies (1,252 cases and 2,592 controls), three European studies (875 cases and 4,107 controls) and a Singaporean Chinese study (1,037 cases and 2,543 controls). A meta-analysis of the top SNPs identified three new associated loci: rs35934224[T] in TXNRD2 (odds ratio (OR) = 0.78, P = 4.05 × 10−11) encoding a mitochondrial protein required for redox homeostasis; rs7137828[T] in ATXN2 (OR = 1.17, P = 8.73 × 10−10); and rs2745572[A] upstream of FOXC1 (OR = 1.17, P = 1.76 × 10−10). Using RT-PCR and immunohistochemistry, we show TXNRD2 and ATXN2 expression in retinal ganglion cells and the optic nerve head. These results identify new pathways underlying POAG susceptibility and suggest new targets for preventative therapies.


Nature Genetics | 2014

Common variants near ABCA1 , AFAP1 and GMDS confer risk of primary open-angle glaucoma

Puya Gharahkhani; Kathryn P. Burdon; Rhys Fogarty; Shiwani Sharma; Alex W. Hewitt; Sarah Martin; Matthew H. Law; Katie Cremin; Jessica N. Cooke Bailey; Stephanie Loomis; Louis R. Pasquale; Jonathan L. Haines; Michael A. Hauser; Ananth C. Viswanathan; Peter McGuffin; Fotis Topouzis; Paul J. Foster; Stuart L. Graham; Robert J. Casson; Mark Chehade; Andrew White; Tiger Zhou; Emmanuelle Souzeau; John Landers; Jude Fitzgerald; Sonja Klebe; Jonathan B Ruddle; Ivan Goldberg; Paul R. Healey; Richard Arthur Mills

Primary open-angle glaucoma (POAG) is a major cause of irreversible blindness worldwide. We performed a genome-wide association study in an Australian discovery cohort comprising 1,155 cases with advanced POAG and 1,992 controls. We investigated the association of the top SNPs from the discovery stage in two Australian replication cohorts (932 cases and 6,862 controls total) and two US replication cohorts (2,616 cases and 2,634 controls total). Meta-analysis of all cohorts identified three loci newly associated with development of POAG. These loci are located upstream of ABCA1 (rs2472493[G], odds ratio (OR) = 1.31, P = 2.1 × 10−19), within AFAP1 (rs4619890[G], OR = 1.20, P = 7.0 × 10−10) and within GMDS (rs11969985[G], OR = 1.31, P = 7.7 × 10−10). Using RT-PCR and immunolabeling, we show that these genes are expressed within human retina, optic nerve and trabecular meshwork and that ABCA1 and AFAP1 are also expressed in retinal ganglion cells.


Ophthalmology | 2014

Association of CAV1/CAV2 Genomic Variants with Primary Open-Angle Glaucoma Overall and by Gender and Pattern of Visual Field Loss

Stephanie Loomis; Jae H. Kang; Robert N. Weinreb; Brian L. Yaspan; Jessica Cooke Bailey; Douglas E. Gaasterland; Terry Gaasterland; Richard K. Lee; Paul R. Lichter; Donald L. Budenz; Yutao Liu; Tony Realini; David S. Friedman; Catherine A. McCarty; Lana M. Olson; Joel S. Schuman; Kuldev Singh; Douglas Vollrath; Gadi Wollstein; Donald J. Zack; Murray H. Brilliant; Arthur J. Sit; William G. Christen; John H. Fingert; Peter Kraft; Kang Zhang; R. Rand Allingham; Margaret A. Pericak-Vance; Julia E. Richards; Michael A. Hauser

PURPOSE The CAV1/CAV2 (caveolin 1 and caveolin 2) genomic region previously was associated with primary open-angle glaucoma (POAG), although replication among independent studies has been variable. The aim of this study was to assess the association between CAV1/CAV2 single nucleotide polymorphisms (SNPs) and POAG in a large case-control dataset and to explore associations by gender and pattern of visual field (VF) loss further. DESIGN Case-control study. PARTICIPANTS We analyzed 2 large POAG data sets: the Glaucoma Genes and Environment (GLAUGEN) study (976 cases, 1140 controls) and the National Eye Institute Glaucoma Human Genetics Collaboration (NEIGHBOR) consortium (2132 cases, 2290 controls). METHODS We studied the association between 70 SNPs located within the CAV1/CAV2 genomic region in the GLAUGEN and NEIGHBOR studies, both genotyped on the Illumina Human 660WQuadv1C BeadChip array and imputed with the Markov Chain Haplotyping algorithm using the HapMap 3 reference panel. We used logistic regression models of POAG in the overall population and separated by gender, as well as by POAG subtypes defined by type of VF defect (peripheral or paracentral). Results from GLAUGEN and NEIGHBOR were meta-analyzed, and a Bonferroni-corrected significance level of 7.7 × 10(-4) was used to account for multiple comparisons. MAIN OUTCOME MEASURES Overall POAG, overall POAG by gender, and POAG subtypes defined by pattern of early VF loss. RESULTS We found significant associations between 10 CAV1/CAV2 SNPs and POAG (top SNP, rs4236601; pooled P = 2.61 × 10(-7)). Of these, 9 were significant only in women (top SNP, rs4236601; pooled P = 1.59 × 10(-5)). Five of the 10 CAV1/CAV2 SNPs were associated with POAG with early paracentral VF (top SNP, rs17588172; pooled P = 1.07 × 10(-4)), and none of the 10 were associated with POAG with peripheral VF loss only or POAG among men. CONCLUSIONS CAV1/CAV2 SNPs were associated significantly with POAG overall, particularly among women. Furthermore, we found an association between CAV1/CAV2 SNPs and POAG with paracentral VF defects. These data support a role for caveolin 1, caveolin 2, or both in POAG and suggest that the caveolins particularly may affect POAG pathogenesis in women and in patients with early paracentral VF defects.


Human Genomics | 2011

Systems biology-based analysis implicates a novel role for vitamin D metabolism in the pathogenesis of age-related macular degeneration

Margaux A. Morrison; Alexandra C. Silveira; Nancy Huynh; Gyungah Jun; Silvia E. Smith; Fani Zacharaki; Hajime Sato; Stephanie Loomis; M. T. Andreoli; Scott M. Adams; Monte J. Radeke; Austin S. Jelcick; Yang Yuan; Aristoteles Tsiloulis; Dimitrios Z. Chatzoulis; Giuliana Silvestri; Maria G. Kotoula; Evangelia E. Tsironi; Bruce W. Hollis; Rui Chen; Neena B. Haider; Joan W. Miller; Lindsay A. Farrer; Gregory S. Hageman; Ivana K. Kim; Debra A. Schaumberg; Margaret M. DeAngelis

Vitamin D has been shown to have anti-angiogenic properties and to play a protective role in several types of cancer, including breast, prostate and cutaneous melanoma. Similarly, vitamin D levels have been shown to be protective for risk of a number of conditions, including cardiovascular disease and chronic kidney disease, as well as numerous autoimmune disorders such as multiple sclerosis, inflammatory bowel diseases and type 1 diabetes mellitus. A study performed by Parekh et al. was the first to suggest a role for vitamin D in age-related macular degeneration (AMD) and showed a correlation between reduced serum vitamin D levels and risk for early AMD. Based on this study and the protective role of vitamin D in diseases with similar pathophysiology to AMD, we examined the role of vitamin D in a family-based cohort of 481 sibling pairs. Using extremely phenotypically discordant sibling pairs, initially we evaluated the association of neovascular AMD and vitamin D/sunlight-related epidemiological factors. After controlling for established AMD risk factors, including polymorphisms of the genes encoding complement factor H (CFH) and age-related maculopathy susceptibility 2/HtrA serine peptidase (ARMS2/HTRA1), and smoking history, we found that ultraviolet irradiance was protective for the development of neovascular AMD (p = 0.001). Although evaluation of serum vitamin D levels (25-hydroxyvitamin D [25(OH)D]) was higher in unaffected individuals than in their affected siblings, this finding did not reach statistical significance.Based on the relationship between ultraviolet irradiance and vitamin D production, we employed a candidate gene approach for evaluating common variation in key vitamin D pathway genes (the genes encoding the vitamin D receptor [VDR]; cytochrome P450, family 27, subfamily B, polypeptide 1 [CYP27B1]; cytochrome P450, family 24, subfamily A, polypeptide 1 [CYP24A1]; and CYP27A1) in this same family-based cohort. Initial findings were then validated and replicated in the extended family cohort, an unrelated case-control cohort from central Greece and a prospective nested case-control population from the Nurses Health Study and Health Professionals Follow-Up Studies, which included patients with all subtypes of AMD for a total of 2,528 individuals. Single point variants in CYP24A1 (the gene encoding the catabolising enzyme of the vitamin D pathway) were demonstrated to influence AMD risk after controlling for smoking history, sex and age in all populations, both separately and, more importantly, in a meta-analysis. This is the first report demonstrating a genetic association between vitamin D metabolism and AMD risk. These findings were also supplemented with expression data from human donor eyes and human retinal cell lines. These data not only extend previous biological studies in the AMD field, but further emphasise common antecedents between several disorders with an inflammatory/immunogenic component such as cardiovascular disease, cancer and AMD.


PLOS Genetics | 2014

Discovery and functional annotation of SIX6 variants in primary open-angle glaucoma.

Megan Ulmer Carnes; Yangfan P. Liu; R. Rand Allingham; Benjamin T. Whigham; Shane Havens; Melanie E. Garrett; Chunyan Qiao; Nicholas Katsanis; Janey L. Wiggs; Louis R. Pasquale; Allison E. Ashley-Koch; Edwin C. Oh; Michael A. Hauser; Murray H. Brilliant; Donald L. Budenz; Hemin R. Chin; Jessica Cooke Bailey; John H. Fingert; David S. Friedman; Douglas E. Gaasterland; Terry Gaasterland; Jonathan L. Haines; Jae H. Kang; Richard K. Lee; Paul R. Lichter; Yutao Liu; Stephanie Loomis; Cathy Essentia McCarty; Margaret A. Pericak-Vance; Anthony Realini

Glaucoma is a leading cause of blindness worldwide. Primary open-angle glaucoma (POAG) is the most common subtype and is a complex trait with multigenic inheritance. Genome-wide association studies have previously identified a significant association between POAG and the SIX6 locus (rs10483727, odds ratio (OR) = 1.32, p = 3.87×10−11). SIX6 plays a role in ocular development and has been associated with the morphology of the optic nerve. We sequenced the SIX6 coding and regulatory regions in 262 POAG cases and 256 controls and identified six nonsynonymous coding variants, including five rare and one common variant, Asn141His (rs33912345), which was associated significantly with POAG (OR = 1.27, p = 4.2×10−10) in the NEIGHBOR/GLAUGEN datasets. These variants were tested in an in vivo Danio rerio (zebrafish) complementation assay to evaluate ocular metrics such as eye size and optic nerve structure. Five variants, found primarily in POAG cases, were hypomorphic or null, while the sixth variant, found only in controls, was benign. One variant in the SIX6 enhancer increased expression of SIX6 and disrupted its regulation. Finally, to our knowledge for the first time, we have identified a clinical feature in POAG patients that appears to be dependent upon SIX6 genotype: patients who are homozygous for the SIX6 risk allele (His141) have a statistically thinner retinal nerve fiber layer than patients homozygous for the SIX6 non-risk allele (Asn141). Our results, in combination with previous SIX6 work, lead us to hypothesize that SIX6 risk variants disrupt the development of the neural retina, leading to a reduced number of retinal ganglion cells, thereby increasing the risk of glaucoma-associated vision loss.


Journal of Glaucoma | 2013

The NEIGHBOR Consortium Primary Open Angle Glaucoma Genome-wide Association Study: Rationale, Study design and Clinical variables

Janey L. Wiggs; Michael A. Hauser; Wael Abdrabou; R. Rand Allingham; Donald L. Budenz; E. DelBono; David S. Friedman; Jae H. Kang; Douglas E. Gaasterland; Terry Gaasterland; Richard K. Lee; Paul R. Lichter; Stephanie Loomis; Yutao Liu; Catherine A. McCarty; Felipe A. Medeiros; Lana M. Olson; Anthony Realini; Julia E. Richards; Frank W. Rozsa; Joel S. Schuman; Kuldev Singh; Joshua Stein; Douglas Vollrath; Robert N. Weinreb; Gadi Wollstein; Brian L. Yaspan; Sachiko Yoneyama; D. J. Zack; Kang Zhang

Primary open-angle glaucoma (POAG) is a common disease with complex inheritance. The identification of genes predisposing to POAG is an important step toward the development of novel gene-based methods of diagnosis and treatment. Genome-wide association studies (GWAS) have successfully identified genes contributing to complex traits such as POAG however, such studies frequently require very large sample sizes, and thus, collaborations and consortia have been of critical importance for the GWAS approach. In this report we describe the formation of the NEIGHBOR consortium, the harmonized case control definitions used for a POAG GWAS, the clinical features of the cases and controls, and the rationale for the GWAS study design.


PLOS ONE | 2013

Soluble Guanylate Cyclase α1–Deficient Mice: A Novel Murine Model for Primary Open Angle Glaucoma

Emmanuel Buys; Yu Chieh Ko; Clemens Alt; Sarah Hayton; Alexander Jones; Laurel T. Tainsh; Ruiyi Ren; Andrea Giani; Maëva Clerte; Emma Abernathy; Robert Tainsh; Dong Jin Oh; Rajeev Malhotra; Pankaj Arora; Nadine E. de Waard; Binglan Yu; Raphaël Turcotte; Daniel I. Nathan; Marielle Scherrer-Crosbie; Stephanie Loomis; Jae H. Kang; Charles P. Lin; Haiyan Gong; Douglas J. Rhee; Peter Brouckaert; Janey L. Wiggs; Meredith S. Gregory; Louis R. Pasquale; Kenneth D. Bloch; Bruce R. Ksander

Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1–deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and β1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.

Collaboration


Dive into the Stephanie Loomis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janey L. Wiggs

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Jonathan L. Haines

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald L. Budenz

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard K. Lee

Bascom Palmer Eye Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge