Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie M. Ware is active.

Publication


Featured researches published by Stephanie M. Ware.


Pediatrics | 2004

Clinical Spectrum, Morbidity, and Mortality in 113 Pediatric Patients with Mitochondrial Disease

Fernando Scaglia; Jeffrey A. Towbin; William J. Craigen; John W. Belmont; Stephen R. Neish; Stephanie M. Ware; Jill V. Hunter; Susan D. Fernbach; Georgirene D. Vladutiu; Lee-Jun C. Wong; Hannes Vogel

Objectives. The aim of this study was to elucidate the frequency of major clinical manifestations in children with mitochondrial disease and establish their clinical course, prognosis, and rates of survival depending on their clinical features. Methods. We performed a retrospective review of the medical records of 400 patients who were referred for evaluation of mitochondrial disease. By use of the modified Walker criteria, only patients who were assigned a definite diagnosis were included in the study. Results. A total of 113 pediatric patients with mitochondrial disease were identified. A total of 102 (90%) patients underwent a muscle biopsy as part of the diagnostic workup. A significant respiratory chain (RC) defect, according to the diagnostic criteria, was found in 71% of the patients who were evaluated. In this cohort, complex I deficiency (32%) and combined complex I, III, and IV deficiencies (26%) were the most common causes of RC defects, followed by complex IV (19%), complex III (16%), and complex II deficiencies (7%). Pathogenic mitochondrial DNA abnormalities were found in 11.5% of the patients. A substantial fraction (40%) of patients with mitochondrial disorders exhibited cardiac disease, diagnosed by Doppler echocardiography; however, the majority (60%) of patients had predominant neuromuscular manifestations. No correlation between the type of RC defect and the clinical presentation was observed. Overall, the mean age at presentation was 40 months. However, the mean age at presentation was 33 months in the cardiac group and 44 months in the noncardiac group. Twenty-six (58%) patients in the cardiac group exhibited hypertrophic cardiomyopathy, 29% had dilated cardiomyopathy, and the remainder (13%) had left ventricular noncompaction. Patients with cardiomyopathy had an 18% survival rate at 16 years of age. Patients with neuromuscular features but no cardiomyopathy had a 95% survival at the same age. Conclusions. This study gives strong support to the view that in patients with RC defects, cardiomyopathy is more common than previously thought and tends to follow a different and more severe clinical course. Although with a greater frequency than previously reported, mitochondrial DNA mutations were found in a minority of patients, emphasizing that most mitochondrial disorders of childhood follow a Mendelian pattern of inheritance.


Circulation | 2005

Genetic Predictors and Remodeling of Dilated Cardiomyopathy in Muscular Dystrophy

John L. Jefferies; John W. Belmont; William J. Craigen; Stephanie M. Ware; Susan D. Fernbach; Steven R. Neish; Jeffrey A. Towbin

Background— Dystrophin gene mutations cause 2 common muscular dystrophies, Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). Both are frequently associated with dilated cardiomyopathy (DCM) and premature death. We hypothesized that early diagnosis and treatment of DCM in DMD/BMD patients would lead to ventricular remodeling and that specific dystrophin gene mutations would predict cardiac involvement. Methods and Results— Sixty-nine boys with DMD (n=62) and BMD (n=7) (mean age, 12.9 and 13.7 years, respectively) were referred to our Cardiovascular Genetics Clinic for evaluation, including echocardiography and DNA analysis. Follow-up evaluations were scheduled yearly until the first abnormal echocardiogram indicative of DCM and quarterly thereafter. After the first abnormal echocardiogram, angiotensin-converting enzyme inhibitor or &bgr;-blocker therapy was started. &bgr;-Blockers were added if echocardiography showed no ventricular remodeling in angiotensin-converting enzyme inhibitor–treated patients after 3 months. DCM was diagnosed in 31 subjects (DMD, 27/62, 44%; BMD, 4/7, 57%) (mean age at onset, 15.4±2.8 years; range, 10.4 to 21.2 years). All 31 subjects were begun on pharmacological therapy after diagnosis. On follow-up (n=29), 2 subjects (both DMD) showed stable DCM, 8 subjects (all DMD) showed improvement, and 19 subjects (16 DMD; 3 BMD) showed normalization of left ventricular size and function (total improvement, 27/29 [93%]). DNA analysis in 47 cases (68%) revealed a significant association between DCM and exon 12 and 14 to 17 mutations, possible protection against DCM by exon 51 to 52 mutations, and a trend toward significant association between onset of DCM and exon 31 to 42 mutations. Statistical significance was based on nominal probability values. Conclusions— Early diagnosis and treatment of DCM may lead to ventricular remodeling in DMD/BMD patients. Specific dystrophin gene mutations appear to be predictive of cardiac involvement, while other mutations may protect against or inhibit development of DCM. Further studies evaluating the impact of early intervention strategies on left ventricular geometry and function in muscular dystrophy patients seem warranted.


American Journal of Human Genetics | 2004

Identification and Functional Analysis of ZIC3 Mutations in Heterotaxy and Related Congenital Heart Defects

Stephanie M. Ware; Jianlan Peng; Lirong Zhu; Susan D. Fernbach; Suzanne M. Colicos; Brett Casey; Jeffrey A. Towbin; John W. Belmont

Mutations in the zinc finger transcription factor ZIC3 cause X-linked heterotaxy and have also been identified in patients with isolated congenital heart disease (CHD). To determine the relative contribution of ZIC3 mutations to both heterotaxy and isolated CHD, we screened the coding region of ZIC3 in 194 unrelated patients, including 61 patients with classic heterotaxy, 93 patients with heart defects characteristic of heterotaxy, and 11 patients with situs inversus totalis. Five novel ZIC3 mutations in three classic heterotaxy kindreds and two sporadic CHD cases were identified. None of these alleles was found in 97 ethnically matched control samples. On the basis of these analyses, we conclude that the phenotypic spectrum of ZIC3 mutations should be expanded to include affected females and CHD not typical for heterotaxy. This screening of a cohort of patients with sporadic heterotaxy indicates that ZIC3 mutations account for approximately 1% of affected individuals. Missense and nonsense mutations were found in the highly conserved zinc finger-binding domain and in the N-terminal protein domain. Functional analysis of all currently known ZIC3 point mutations indicates that mutations in the putative zinc finger DNA binding domain and in the N-terminal domain result in loss of reporter gene transactivation. It is surprising that transfection studies demonstrate aberrant cytoplasmic localization resulting from mutations between amino acids 253-323 of the ZIC3 protein, indicating that the pathogenesis of a subset of ZIC3 mutations results at least in part from failure of appropriate nuclear localization. These results further expand the phenotypic and genotypic spectrum of ZIC3 mutations and provide initial mechanistic insight into their functional consequences.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning

Khalid A. Fakhro; Murim Choi; Stephanie M. Ware; John W. Belmont; Jeffrey A. Towbin; Richard P. Lifton; Mustafa K. Khokha; Martina Brueckner

Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10−4). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10−6). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2009

Disorders of Left-Right Asymmetry: Heterotaxy and Situs Inversus

Mardi J. Sutherland; Stephanie M. Ware

Cilia function is critical to the development of proper organ laterality. Primary ciliary dyskinesia (PCD) causes randomization of situs. Heterotaxy, or situs ambiguus, is an abnormal arrangement of the thoracic and abdominal organs that results in congenital anomalies. Animal models and developmental biological approaches have defined pathways required during embryogenesis for proper left–right pattern formation. New candidates for genetic causes of human laterality disorders have emerged from recent studies on the assembly, transport, and signaling functions of cilia at the node as well as identification of cilia within the developing heart. There is evidence that deleterious genetic variants within one or more developmental pathways may disrupt signaling in a synergistic or combinatorial fashion to cause congenital anomalies. The molecular pathways underlying PCD and heterotaxy are being discovered at a rapid pace, and there is increasing recognition of the overlap between these two categories of laterality disorders and their relationship to isolated cardiovascular malformations. This review focuses on the clinical manifestations, molecular mechanisms, and human genetics of these disorders of laterality.


Development | 2005

The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo

Canhe Chen; Stephanie M. Ware; Akira Sato; Dianne E. Houston-Hawkins; Raymond Habas; Martin M. Matzuk; Michael M. Shen; Chester W. Brown

The formation of the anterior visceral endoderm (AVE) in the pre-gastrulation mouse embryo represents a crucial event in patterning of the anterior-posterior axis. Here, we show that the transforming growth factorβ (Tgfβ) family member Gdf3 (growth-differentiation factor 3), a close relative of Xenopus Vg1, resembles the Tgfβ ligand Nodal in both its signaling activity and its role in AVE formation in vivo. Thus, in cell culture, Gdf3 signaling requires the EGF-CFC co-receptor Cripto and can be inhibited by Lefty antagonists. In Xenopus embryos, Gdf3 misexpression results in secondary axis formation, and induces morphogenetic elongation and mesendoderm formation in animal caps. In mouse embryos, Gdf3 is expressed in the inner cell mass and epiblast, and null mutants frequently exhibit abnormal formation or positioning of the AVE. This phenotype correlates with defects in mesoderm and definitive endoderm formation, as well as abnormal Nodal expression levels. Our findings indicate that Gdf3 acts in a Nodal-like signaling pathway in pre-gastrulation development, and provide evidence for the functional conservation of Vg1 activity in mice.


European Journal of Human Genetics | 2006

Genetics of human heterotaxias

Lirong Zhu; John W. Belmont; Stephanie M. Ware

The past decade has seen remarkable advances in defining the molecular mechanisms underlying formation of the embryonic left right (LR) axis. This information is slowly transforming our understanding of human birth defects that are caused by disturbed LR axis patterning. Reversals, isomerisms, or segmental discordances of thoraco-abdominal organ position, that is, classic heterotaxy, clearly indicate embryonic disruption of normal LR patterning. Other isolated birth defects, particularly cardiovascular malformations, may be caused by deficiencies in the same pathways. Here, we review the distinctive clinical features of human heterotaxias and try to summarize the known connections between them and the corresponding developmental pathways.


Human Molecular Genetics | 2009

Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations

Bhagyalaxmi Mohapatra; Brett Casey; Hua Li; Trang Ho-Dawson; Liana Smith; Susan D. Fernbach; Laura Molinari; Stephen R. Niesh; John L. Jefferies; William J. Craigen; Jeffrey A. Towbin; John W. Belmont; Stephanie M. Ware

NODAL and its signaling pathway are known to play a key role in specification and patterning of vertebrate embryos. Mutations in several genes encoding components of the NODAL signaling pathway have previously been implicated in the pathogenesis of human left-right (LR) patterning defects. Therefore, NODAL, a member of TGF-beta superfamily of developmental regulators, is a strong candidate to be functionally involved in congenital LR axis patterning defects or heterotaxy. Here we have investigated whether variants in NODAL are present in patients with heterotaxy and/or isolated cardiovascular malformations (CVM) thought to be caused by abnormal heart tube looping. Analysis of a large cohort of cases (n = 269) affected with either classic heterotaxy or looping CVM revealed four different missense variants, one in-frame insertion/deletion and two conserved splice site variants in 14 unrelated subjects (14/269, 5.2%). Although similar with regard to other associated defects, individuals with the NODAL mutations had a significantly higher occurrence of pulmonary valve atresia (P = 0.001) compared with cases without a detectable NODAL mutation. Functional analyses demonstrate that the missense variant forms of NODAL exhibit significant impairment of signaling as measured by decreased Cripto (TDGF-1) co-receptor-mediated activation of artificial reporters. Expression of these NODAL proteins also led to reduced induction of Smad2 phosphorylation and impaired Smad2 nuclear import. Taken together, these results support a role for mutations and rare deleterious variants in NODAL as a cause for sporadic human LR patterning defects.


The Journal of Allergy and Clinical Immunology | 2013

High prevalence of eosinophilic esophagitis in patients with inherited connective tissue disorders

J. Pablo Abonia; Ting Wen; Emily M. Stucke; Tommie M. Grotjan; Molly S. Griffith; Katherine A. Kemme; Margaret H. Collins; Philip E. Putnam; James P. Franciosi; Karl F. von Tiehl; Brad T. Tinkle; Keith Marsolo; Lisa J. Martin; Stephanie M. Ware; Marc E. Rothenberg

BACKGROUNDnEosinophilic esophagitis (EoE) is an emerging chronic inflammatory disease mediated by immune hypersensitization to multiple foods and strongly associated with atopy and esophageal remodeling.nnnOBJECTIVEnWe provide clinical and molecular evidence indicating a high prevalence of EoE in patients with inherited connective tissue disorders (CTDs).nnnMETHODSnWe examined the rate of EoE among patients with CTDs and subsequently analyzed esophageal mRNA transcript profiles in patients with EoE with or without CTD features.nnnRESULTSnWe report a cohort of 42 patients with EoE with a CTD-like syndrome, representing 0.8% of patients with CTDs and 1.3% of patients with EoE within our hospital-wide electronic medical record database and our EoE research registry, respectively. An 8-fold risk of EoE in patients with CTDs (relative risk, 8.1; 95% confidence limit, 5.1-12.9; χ(2)1 = 112.0; P < 10(-3)) was present compared with the general population. Esophageal transcript profiling identified a distinct subset of genes, including COL8A2, in patients with EoE and CTDs.nnnCONCLUSIONnThere is a remarkable association of EoE with CTDs and evidence for a differential expression of genes involved in connective tissue repair in this cohort. Thus, we propose stratification of patients with EoE and CTDs into a subset referred to as EoE-CTD.


Current Opinion in Cardiology | 2004

Molecular genetics of heterotaxy syndromes.

John W. Belmont; Bhagyalaxmi Mohapatra; Jeffrey A. Towbin; Stephanie M. Ware

Purpose of review Heterotaxy is a complex set of birth defects in which the normal concordance of asymmetric thoracic and abdominal organs is disturbed. In this review the authors summarize recent research on the etiology of heterotaxy syndromes. Improved understanding of the genetic control of left–right patterning in the early embryo is leading to the identification of candidate genes that may be mutated in heterotaxy patients, and epidemiologic studies are helping to define nongenetic mechanisms of embryopathy. Recent findings Several genes have now been implicated in heterotaxy and related isolated congenital heart malformations. These studies indicate that heterotaxy can be caused by single gene mutations. They also demonstrate that there is probably extensive locus heterogeneity. Heterotaxy may be caused by teratogenic exposures, especially maternal diabetes. Isolated congenital heart defects resulting from isomerisms and disturbed looping may be caused by mutations in genes that control early left–right patterning and the earliest steps in cardiogenesis. Genes currently implicated in human heterotaxy include ZIC3, LEFTYA, CRYPTIC, and ACVR2B. Roles for NKX2.5 and CRELDA are suggested by recent case reports. Summary Active research on the etiology of heterotaxy is leading to a reformulation of the likely etiologies. Its complex inheritance likely results from a mix of teratogenic and single gene disorders with variable expression and incomplete penetrance.

Collaboration


Dive into the Stephanie M. Ware's collaboration.

Top Co-Authors

Avatar

Jeffrey A. Towbin

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

John L. Jefferies

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

John W. Belmont

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Erin M. Miller

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert B. Hinton

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Susan D. Fernbach

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kim L. McBride

Nationwide Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Richard J. Czosek

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert L. Spicer

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Allison Haaning

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge