Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie P. Jones is active.

Publication


Featured researches published by Stephanie P. Jones.


Toxicological Sciences | 2013

Amino Acid Sequence of the Ligand-Binding Domain of the Aryl Hydrocarbon Receptor 1 Predicts Sensitivity of Wild Birds to Effects of Dioxin-Like Compounds

Reza Farmahin; Gillian E. Manning; Doug Crump; Dongmei Wu; Lukas J. Mundy; Stephanie P. Jones; Mark E. Hahn; Sibel I. Karchner; John P. Giesy; Steven J. Bursian; Matthew J. Zwiernik; Timothy B. Fredricks; Sean W. Kennedy

The sensitivity of avian species to the toxic effects of dioxin-like compounds (DLCs) varies up to 1000-fold among species, and this variability has been associated with interspecies differences in aryl hydrocarbon receptor 1 ligand-binding domain (AHR1 LBD) sequence. We previously showed that LD(50) values, based on in ovo exposures to DLCs, were significantly correlated with in vitro EC(50) values obtained with a luciferase reporter gene (LRG) assay that measures AHR1-mediated induction of cytochrome P4501A in COS-7 cells transfected with avian AHR1 constructs. Those findings suggest that the AHR1 LBD sequence and the LRG assay can be used to predict avian species sensitivity to DLCs. In the present study, the AHR1 LBD sequences of 86 avian species were studied, and differences at amino acid sites 256, 257, 297, 324, 337, and 380 were identified. Site-directed mutagenesis, the LRG assay, and homology modeling highlighted the importance of each amino acid site in AHR1 sensitivity to 2,3,7,8-tetrachlorodibenzo-p-dioxin and other DLCs. The results of the study revealed that (1) only amino acids at sites 324 and 380 affect the sensitivity of AHR1 expression constructs of the 86 avian species to DLCs and (2) in vitro luciferase activity of AHR1 constructs containing only the LBD of the species of interest is significantly correlated (r (2) = 0.93, p < 0.0001) with in ovo toxicity data for those species. These results indicate promise for the use of AHR1 LBD amino acid sequences independently, or combined with the LRG assay, to predict avian species sensitivity to DLCs.


Environmental Science & Technology | 2012

Sequence and in vitro function of chicken, ring-necked pheasant, and Japanese quail AHR1 predict in vivo sensitivity to dioxins

Reza Farmahin; Dongmei Wu; Doug Crump; Jessica C. Hervé; Stephanie P. Jones; Mark E. Hahn; Sibel I. Karchner; John P. Giesy; Steven J. Bursian; Matthew J. Zwiernik; Sean W. Kennedy

There are large differences in sensitivity to the toxic and biochemical effects of dioxins and dioxin-like compounds (DLCs) among vertebrates. Previously, we demonstrated that the difference in sensitivity between domestic chicken (Gallus gallus domesticus) and common tern (Sterna hirundo) to aryl hydrocarbon receptor 1 (AHR1)-dependent changes in gene expression following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is based upon the identities of the amino acids at two sites within the ligand binding domain of AHR1 (chicken--highly sensitive; Ile324_Ser380 vs common tern--250-fold less sensitive than chicken; Val325_Ala381). Here, we tested the hypotheses that (i) the sensitivity of other avian species to TCDD, 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 2,3,7,8-tetrachlorodibenzofuran (TCDF) is also determined by the amino acids at sites that are equivalent to sites 324 and 380 in chicken, and (ii) Ile324_Ala380 and Val324_Ser380 genotypes confer intermediate sensitivity to DLCs in birds. We compared ligand-induced transactivation function of full-length AHR1s from chicken, common tern, ring-necked pheasant (Phasianus colchicus; Ile324_Ala380) and Japanese quail (Coturnix japonica; Val324_Ala380), and three Japanese quail AHR1 mutants. The results support our hypothesis that avian species can be grouped into three general classes of sensitivity to DLCs. Both AHR1 genotype and in vitro transactivation assays predict in vivo sensitivity. Contrary to the assumption that TCDD is the most potent DLC, PeCDF was more potent than TCDD at activating Japanese quail (13- to 26-fold) and common tern (23- to 30-fold) AHR1. Our results support and expand previous in vitro and in vivo work that demonstrated ligand-dependent species differences in AHR1 affinity. The findings and methods will be of use for DLC risk assessments.


Toxicological Sciences | 2009

Effects of 18 Perfluoroalkyl Compounds on mRNA Expression in Chicken Embryo Hepatocyte Cultures

Nathan J. Hickey; Doug Crump; Stephanie P. Jones; Sean W. Kennedy

Many studies have characterized the effects of perfluoroalkyl compounds (PFCs) in mammalian species, but limited information exists on the effects of PFCs in birds. PFCs have been detected in serum and liver of avian wildlife worldwide. While the molecular mechanisms have yet to be elucidated in detail, PFCs alter lipid metabolism through peroxisome proliferation, xenobiotic metabolism by activating the cytochrome P450 (CYP) system, and serum cholesterol levels by inducing or repressing key genes. Here, we employed a simple messenger RNA (mRNA) screening method using quantitative PCR to assess the effects of PFCs on mRNA expression in chicken embryo hepatocytes (CEH). CEH cultures were treated with perfluoroalkyl sulfonates and perfluoroalkyl carboxylates of varying chain lengths and linear or technical grade potassium perfluoro-1-octane sulfonate (L-PFOS and T-PFOS). T-PFOS comprised 80% perfluorooctane sulfonate isomers (62% linear) and various PFCs and inorganic salts. Relative mRNA expression levels of the following genes were examined: acyl-CoA oxidase (ACOX), liver fatty acid-binding protein (L-FABP), CYP1A4/1A5 and CYP4B1, 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase, and sterol regulatory element-binding protein 2 (SREBP2). Compared to L-PFOS, T-PFOS altered the mRNA expression level of more genes and produced greater fold changes. L-FABP was upregulated by PFCs greater than or equal to eight carbons, while CYPs were upregulated by PFCs less than or equal to eight carbons. ACOX, HMG-CoA, and SREBP2 showed little to no change following PFC exposure. This study is the first to expose CEH cultures to multiple PFCs in vitro and demonstrates that exposure to PFC solutions of different isomeric content or chain length causes variable transcriptional responses.


Ecotoxicology | 2013

Cytochrome P4501A induction in primary cultures of embryonic European starling hepatocytes exposed to TCDD, PeCDF and TCDF

Reza Farmahin; Doug Crump; Stephanie P. Jones; Lukas J. Mundy; Sean W. Kennedy

Novel methods that predict the sensitivity of avian embryos to the toxic effects of dioxin-like compounds (DLCs) using either (1) knowledge of the identity of amino acids at key sites within the ligand binding domain of aryl hydrocarbon receptor 1 (AHR1) or (2) a luciferase reporter gene assay that measures AHR1 activation were recently reported. Results from both methods predict that European starling (Sturnus vulgaris) and domestic chicken (Gallus gallus domesticus) embryos have similar sensitivity to the biochemical and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzofuran (TCDF). Chicken embryos are highly sensitive to DLC toxicity, and the prediction that starlings are equally sensitive is surprising given their widespread distribution and large population size. In an attempt to learn more about starling sensitivity to DLCs, we determined concentration-dependent effects of TCDD, PeCDF and TCDF on cytochrome P4501A4 and 1A5 (CYP1A4 and 1A5) mRNA levels in primary cultures of hepatocytes prepared from embryonic European starlings. It has been demonstrated that the sensitivity of avian hepatocytes to CYP1A4/5 induction is well correlated with LD50 values of DLCs for several avian species. The results of the present study indicate that European starling hepatocytes are indeed as sensitive as chicken hepatocytes to CYP1A4/5 induction after exposure to TCDD. However, starling hepatocytes are less sensitive than chicken hepatocytes to CYP1A4/5 induction by PeCDF and TCDF.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2014

Species-specific relative AHR1 binding affinities of 2,3,4,7,8- pentachlorodibenzofuran explain avian species differences in its relative potency

Reza Farmahin; Stephanie P. Jones; Doug Crump; Mark E. Hahn; John P. Giesy; Matthew J. Zwiernik; Steven J. Bursian; Sean W. Kennedy

Results of recent studies showed that 2,3,4,7,8-pentachlorodibenzofuran (PeCDF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are equipotent in domestic chicken (Gallus gallus domesticus) while PeCDF is more potent than TCDD in ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica). To elucidate the mechanism(s) underlying these differences in relative potency of PeCDF among avian species, we tested the hypothesis that this is due to species-specific differential binding affinity of PeCDF to the aryl hydrocarbon receptor 1 (AHR1). Here, we modified a cell-based binding assay that allowed us to measure the binding affinity of dioxin-like compounds (DLCs) to avian AHR1 expressed in COS-7 (fibroblast-like cells). The results of the binding assay show that PeCDF and TCDD bind with equal affinity to chicken AHR1, but PeCDF binds with greater affinity than TCDD to pheasant (3-fold) and Japanese quail (5-fold) AHR1. The current report introduces a COS-7 whole-cell binding assay and provides a mechanistic explanation for differential relative potencies of PeCDF among species of birds.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2012

Induction of cytochrome P4501A by highly purified hexachlorobenzene in primary cultures of ring-necked pheasant and Japanese quail embryo hepatocytes

Lukas J. Mundy; Doug Crump; Stephanie P. Jones; Alex Konstantinov; Fiona Utley; David Potter; Sean W. Kennedy

Primary cultures of ring-necked pheasant (Phasianus colchicus) and Japanese quail (Coturnix japonica) embryo hepatocytes were used to compare the potencies of highly purified hexachlorobenzne (HCB-P), reagent-grade HCB (RG-HCB) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as inducers of ethoxyresorufin O-deethylase (EROD) activity, cytochrome P4501A (CYP1A4) messenger ribonucleic acid (mRNA) and CYP1A5 mRNA. HCB-P, RG-HCB and TCDD all induced EROD activity and up-regulated CYP1A4 and CYP1A5 mRNA. Induction was not caused by contamination of HCB with polychlorinated dibenzo-p-dioxins, dibenzofurans or biphenyls. Based upon a comparison of the EC(50) and EC(threshold) values for EROD and CYP1A4/5 concentration-response curves, the potency of HCB relative to TCDD was 0.001 in ring-necked pheasant and 0.01 in Japanese quail embryo hepatocytes. Differences in species sensitivity to HCB were found to be mainly dictated by differences in species sensitivity to TCDD rather than differences in the absolute potency of HCB. Consequently, ring-necked pheasant and Japanese quail embryo hepatocytes were found to be equally sensitive to HCB exposure. Species sensitivity comparisons were also made with chicken (Gallus gallus domesticus) and revealed that chicken embryo hepatocytes were less responsive to EROD induction (lower maximal response) by HCB compared to the embryo hepatocytes of pheasant and quail.


Environmental Science & Technology | 2017

Catbirds are the New Chickens: High Sensitivity to a Dioxin-like Compound in a Wildlife Species

Margaret L. Eng; Christine A. Bishop; Doug Crump; Stephanie P. Jones; Tony D. Williams; Ken G. Drouillard; John E. Elliott

Dioxins and dioxin-like compounds (DLCs) are highly toxic and persistent global pollutants with extremely large differences in sensitivity across taxonomic groups. The chicken has long been considered uniquely sensitive to DLCs among avian species; but DLC toxicity in nondomesticated birds is largely untested, and the relevance of the chicken as an ecological model is uncertain. New approaches that use genotyping of the AHR1 ligand binding domain to screen for DLC sensitivity among avian species predicted that the gray catbird, a relevant wildlife species, is also highly sensitive. We tested this prediction using egg injections of a dioxin-like PCB (PCB-126) and found that the catbird is at least as sensitive as the chicken to DLCs, based on both embryotoxicity and mRNA induction of phase I metabolizing enzymes (CYP1A4/5). This study is the first to confirm that there are wildlife species as sensitive as the chicken and demonstrates how using predictive genotyping methods and targeted bioassays can focus toxicity assessments on ecologically relevant species.


Toxicological Sciences | 2010

Cytochrome P4501A Induction by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin and Two Chlorinated Dibenzofurans in Primary Hepatocyte Cultures of Three Avian Species

Jessica C. Hervé; Doug Crump; Stephanie P. Jones; Lukas J. Mundy; John P. Giesy; Matthew J. Zwiernik; Steven J. Bursian; Paul D. Jones; Steve Wiseman; Yi Wan; Sean W. Kennedy


Toxicology and Applied Pharmacology | 2012

A luciferase reporter gene assay and aryl hydrocarbon receptor 1 genotype predict the LD50 of polychlorinated biphenyls in avian species

Gillian E. Manning; Reza Farmahin; Doug Crump; Stephanie P. Jones; Jeff Klein; Alex Konstantinov; Dave Potter; Sean W. Kennedy


Toxicology and Applied Pharmacology | 2013

Cytochrome P4501A induction in avian hepatocyte cultures exposed to polychlorinated biphenyls: Comparisons with AHR1-mediated reporter gene activity and in ovo toxicity

Gillian E. Manning; Lukas J. Mundy; Doug Crump; Stephanie P. Jones; Suzanne Chiu; Jeff Klein; Alex Konstantinov; Dave Potter; Sean W. Kennedy

Collaboration


Dive into the Stephanie P. Jones's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Giesy

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark E. Hahn

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge