Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie P. Kurti is active.

Publication


Featured researches published by Stephanie P. Kurti.


BioMed Research International | 2015

Does Moderate Intensity Exercise Attenuate the Postprandial Lipemic and Airway Inflammatory Response to a High-Fat Meal?

Stephanie P. Kurti; Sara K. Rosenkranz; Morton Levitt; Brooke J. Cull; Colby S. Teeman; Sam R. Emerson; Craig A. Harms

We investigated whether an acute bout of moderate intensity exercise in the postprandial period attenuates the triglyceride and airway inflammatory response to a high-fat meal (HFM) compared to remaining inactive in the postprandial period. Seventeen (11 M/6 F) physically active (≥150 min/week of moderate-vigorous physical activity (MVPA)) subjects were randomly assigned to an exercise (EX; 60% VO2peak) or sedentary (CON) condition after a HFM (10 kcal/kg, 63% fat). Blood analytes and airway inflammation via exhaled nitric oxide (eNO) were measured at baseline, and 2 and 4 hours after HFM. Airway inflammation was assessed with induced sputum and cell differentials at baseline and 4 hours after HFM. Triglycerides doubled in the postprandial period (~113 ± 18%, P < 0.05), but the increase did not differ between EX and CON. Percentage of neutrophils was increased 4 hours after HFM (~17%), but the increase did not differ between EX and CON. Exhaled nitric oxide changed nonlinearly from baseline to 2 and 4 hours after HFM (P < 0.05,  η 2 = 0.36). Our findings suggest that, in active individuals, an acute bout of moderate intensity exercise does not attenuate the triglyceride or airway inflammatory response to a high-fat meal.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2016

Sex differences in the cardiovascular consequences of the inspiratory muscle metaboreflex

Joshua R. Smith; Ryan M. Broxterman; Shane M. Hammer; Andrew M. Alexander; Kaylin D. Didier; Stephanie P. Kurti; Thomas J. Barstow; Craig A. Harms

It is currently unknown whether sex differences exist in the cardiovascular consequences of the inspiratory muscle metaboreflex. We hypothesized that the activation of the inspiratory muscle metaboreflex will lead to less of an increase in mean arterial pressure (MAP) and limb vascular resistance (LVR) and less of a decrease in limb blood flow (Q̇L) in women compared with men. Twenty healthy men (n = 10, 23 ± 2 yr) and women (n = 10, 22 ± 3 yr) were recruited for this study. Subjects performed inspiratory resistive breathing tasks (IRBTs) at 2% or 65% of their maximal inspiratory mouth pressure (PIMAX). During the IRBTs, the breathing frequency was 20 breaths/min with a 50% duty cycle. At rest and during the IRBTs, MAP was measured via automated oscillometry, Q̇L was measured via Doppler ultrasound, and LVR was calculated. EMG was recorded on the leg to ensure no muscle contraction occurred. The 65% IRBT led to attenuated increases (P < 0.01) from baseline in women compared with men for MAP (W: 7.3 ± 2.0 mmHg; M: 11.1 ± 5.0 mmHg) and LVR (W: 17.7% ± 14.0%; M: 47.9 ± 21.0%), as well as less of a decrease (P < 0.01) in Q̇L (W: -7.5 ± 9.9%; M: -23.3 ± 10.2%). These sex differences in MAP, Q̇L, and LVR were still present in a subset of subjects matched for PIMAX The 2% IRBT resulted in no significant changes in MAP, Q̇L, or LVR across time or between men and women. These data indicate premenopausal women exhibit an attenuated inspiratory muscle metaboreflex compared with age-matched men.


Nutrition & Metabolism | 2016

Postprandial lipemic and inflammatory responses to high-fat meals: a review of the roles of acute and chronic exercise

Colby S. Teeman; Stephanie P. Kurti; Brooke J. Cull; Sam R. Emerson; Mark D. Haub; Sara K. Rosenkranz

Postprandial lipemia is an independent risk factor for development of cardiovascular disease. Postprandial inflammation following the prolonged elevation of triglycerides occurring subsequent to ingestion of high-fat meals, provides a likely explanation for increased disease risk. Substantial evidence has shown that acute exercise is an effective modality for attenuation of postprandial lipemia following a high-fat meal. However, much of the evidence pertaining to exercise intensity, duration, and overall energy expenditure for reducing postprandial lipemia is inconsistent. The effects of these different exercise variables on postprandial inflammation is largely unknown. Long-term, frequent exercise, however, appears to effectively reduce systemic inflammation, especially in at-risk or diseased individuals. With regard to an acute postprandial response, without a recent bout of exercise, high levels of chronic exercise do not appear to reduce postprandial lipemia. This review summarizes the current literature on postprandial and inflammatory responses to high-fat meals, and the roles that both acute and chronic exercise play. This review may be valuable for health professionals who wish to provide evidence-based, pragmatic advice for reducing postprandial lipemia and cardiovascular disease risk for their patients. A brief review of proposed mechanisms explaining how high-fat meals may result in pro-inflammatory and pro-atherosclerotic environments is also included.


Advances in Nutrition | 2017

Magnitude and Timing of the Postprandial Inflammatory Response to a High-Fat Meal in Healthy Adults: A Systematic Review

Sam R. Emerson; Stephanie P. Kurti; Craig A. Harms; Mark D. Haub; Tonatiuh Melgarejo; Cindy Logan; Sara K. Rosenkranz

Research findings over the past several decades have shown that inflammation is a prominent feature of many chronic diseases, with poor diet being one likely inflammatory stimulus. Specifically, a single high-fat meal (HFM) has been suggested to increase inflammation, although there is currently no consensus with regard to the specific changes in many of the proinflammatory markers that are frequently assessed after an HFM. The aim of this systematic review was to objectively describe the postprandial timing and magnitude of changes in 5 common inflammatory markers: interleukin (IL) 6, C-reactive protein (CRP), tumor necrosis factor (TNF) α, IL-1β, and IL-8. Ten relevant databases were searched, yielding 494 results, of which 47 articles met the pre-established inclusion criteria: 1) healthy men and women aged 18-60 y, 2) consuming a single HFM (≥30% fat, ≥500 kcal), and 3) assessing relevant inflammatory markers postmeal for ≥2 h. The only marker found to consistently change in the postprandial period was IL-6: on average, from a baseline of ∼1.4 pg/mL, it peaked at ∼2.9 pg/mL ∼6 h post-HFM (an average relative change of ∼100%). CRP, TNF-α, IL-1β, and IL-8 did not change significantly in 79% (23 of 29), 68% (19 of 28), 67% (2 of 3), and 75% (3 of 4) of included studies, respectively. We conclude that there is strong evidence that CRP and TNF-α are not responsive at the usual time scale observed in postprandial studies in healthy humans younger than age 60 y. However, future research should further investigate the role of IL-6 in the postprandial period, because it routinely increases even in healthy participants. We assert that the findings of this systematic review on markers of inflammation in the postprandial period will considerably aid in informing future research and advancing clinical knowledge.


Medicine and Science in Sports and Exercise | 2015

Decreased Prevalence of Exercise Expiratory Flow Limitation from Pre- to Postpuberty.

Sam R. Emerson; Stephanie P. Kurti; Sara K. Rosenkranz; Joshua R. Smith; Craig A. Harms

PURPOSE We recently reported a high prevalence of expiratory flow limitation (EFL) independent of sex in prepubescent children that exceeds the prevalence reported in adults. It is unknown how transpubertal maturation and growth affect pulmonary function, specifically EFL, during exercise. The purpose of this longitudinal study was to investigate the changes in EFL, including sex differences, from pre- to postpuberty. METHODS Twenty-one children (age 12-16 yr, 11 boys and 10 girls) were recruited from 40 prepubescent children who completed testing in our laboratory ∼5 yr ago. Subjects completed pulmonary function tests before and after an incremental exercise test to exhaustion on a cycle ergometer. EFL was determined using the percent tidal volume overlap method. RESULTS Nineteen of 21 subjects (10 boys and 9 girls, ∼90%) exhibited EFL prepuberty, whereas only 7 of 21 subjects (5 boys and 2 girls, 33%) exhibited EFL postpuberty. Boys had a significantly greater forced vital capacity (FVC) than girls both pre- (∼15%) and postpuberty (boys: 4.73 ± 0.53 L; girls: 3.80 ± 0.29 L). Maximal aerobic capacity (V˙O2max) significantly increased (boys: ∼120%; girls: ∼110%) from pre- to postpuberty and was greater (P < 0.05) in boys postpuberty (boys: 2.76 ± 0.43 L·min; girls: 1.94 ± 0.35 L·min). V˙E/V˙CO2 significantly decreased (∼13%) in boys and girls during maximal exercise. Postpuberty, subjects regulated tidal breathing at significantly higher lung volumes (greater expiratory reserve volume/FVC and lower inspiratory reserve volume/FVC) during exercise compared with prepuberty. CONCLUSION Our findings suggest that the prevalence of EFL declines as children mature from pre- to postpuberty, likely because of increases in lung size, decreases in V˙E/V˙CO2, and/or changes in breathing mechanics that are greater than increases in maximal ventilation that occur with increased pulmonary gas exchange.


Applied Physiology, Nutrition, and Metabolism | 2016

Effects of an acute bout of moderate intensity exercise on postprandial lipemia and airway inflammation

Ariel M. Johnson; Stephanie P. Kurti; Joshua R. Smith; Sara K. Rosenkranz; Craig A. Harms

A high-fat meal (HFM) induces an increase in blood lipids (postprandial lipemia; PPL), systemic inflammation, and acute airway inflammation. While acute exercise has been shown to have anti-inflammatory and lipid-lowering effects, it is unknown whether exercise prior to an HFM will translate to reduced airway inflammation post-HFM. Our purpose was to determine the effects of an acute bout of exercise on airway inflammation post-HFM and to identify whether any protective effect of exercise on airway inflammation was associated with a reduction in PPL or systemic inflammation. In a randomized cross-over study, 12 healthy, 18- to 29-year-old men (age, 23.0 ± 3.2 years; height, 178.9 ± 5.5 cm; weight, 78.5 ± 11.7 kg) consumed an HFM (1 g fat/1 kg body weight) 12 h following exercise (EX; 60 min at 60% maximal oxygen uptake) or without exercise (CON). Fractional exhaled nitric oxide (FENO; measure of airway inflammation), triglycerides (TG), and inflammatory markers (high-sensitivity C-reactive protein, tumor-necrosis factor-alpha, and interleukin-6) were measured while fasted at 2 h and 4 h post-HFM. FENO increased over time (2 h: CON, p = 0.001; EX, p = 0.002, but not by condition (p = 0.991). TG significantly increased 2 and 4 h post-HFM (p < 0.001), but was not significant between conditions (p = 0.256). Inflammatory markers did not significantly increase by time or condition (p > 0.05). There were no relationships between FENO and TG or systemic inflammatory markers for any time point or condition (p > 0.05). In summary, an acute bout of moderate-intensity exercise performed 12 h prior to an HFM did not change postprandial airway inflammation or lipemia in healthy, 18- to 29-year-old men.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Cardiovascular Consequences of the Inspiratory Muscle Metaboreflex: Effects of Age and Sex

Joshua R. Smith; Andrew M. Alexander; Shane M. Hammer; Kaylin D. Didier; Stephanie P. Kurti; Ryan M. Broxterman; Thomas J. Barstow; Craig A. Harms

With inspiratory muscle metaboreflex activation, we hypothesized that, compared with their younger counterparts, older men and women would exhibit greater 1) increases in mean arterial pressure (MAP) and limb vascular resistance (LVR) and 2) decreases in limb blood flow (Q̇L) but 3) no sex differences would be present in older adults. Sixteen young adults [8 young men (YM) and 8 young women (YW), 18-24 yr] and 16 older adults [8 older men (OM) and 8 older women (OW), 60-73 yr] performed inspiratory resistive breathing tasks (IRBTs) at 2% and 65% of their maximal inspiratory pressure. During the IRBTs, breathing frequency was 20 breaths/min with a 50% duty cycle. At baseline and during the IRBTs, MAP was measured via automated oscillometry, Q̇L was determined via Doppler ultrasound, and LVR was calculated. The 65% IRBT led to significantly greater increases in MAP in OW (15.9 ± 8.1 mmHg) compared with YW (6.9 ± 1.4 mmHg) but not (P > 0.05) between OM (12.3 ± 5.7 mmHg) and YM (10.8 ± 5.7 mmHg). OW (-20.2 ± 7.2%) had greater (P < 0.05) decreases in Q̇L compared with YW (-9.4 ± 10.2%), but no significant differences were present between OM (-22.8 ± 9.7%) and YM (-22.7 ± 11.3%) during the 65% IRBT. The 65% IRBT led to greater (P < 0.05) increases in LVR in OW (48.2 ± 25.5%) compared with YW (19.7 ± 15.0%), but no differences (P > 0.05) existed among OM (54.4 ± 17.8%) and YM (47.1 ± 23.3%). No significant differences were present in MAP, Q̇L, or LVR between OM and OW. These data suggest that OW exhibit a greater inspiratory muscle metaboreflex compared with YW, whereas no differences between OM and YM existed. Finally, sex differences in the inspiratory muscle metaboreflex are not present in older adults.NEW & NOTEWORTHY Premenopausal women exhibit an attenuated inspiratory muscle metaboreflex compared with young men; however, it is unknown whether these sex differences are present in older adults. Older women exhibited a greater inspiratory muscle metaboreflex compared with premenopausal women, whereas no differences were present between older and younger men.


Respiratory Physiology & Neurobiology | 2016

Improved lung function following dietary antioxidant supplementation in exercise-induced asthmatics.

Stephanie P. Kurti; Jill D. Murphy; Christine S. Ferguson; K.R. Brown; Joshua R. Smith; Craig A. Harms

INTRODUCTION Oxidative stress is a characteristic of exercise-induced asthma (EIA), however antioxidant supplementation may attenuate EIA. The purpose of this study was to determine if ascorbic (AsA) and α-tocopherol supplementation would improve airway function in subjects with EIA. METHODS A single-blind randomized crossover design with eight clinically diagnosed EIA subjects (22.0 ± 0.7 year) and five healthy control subjects (28.2 ± 1.4 year) was used. Subjects consumed vitamins (V) (AsA 500 mg; α-tocopherol 300 IU) or placebo (PLA) daily for three weeks, followed by a three week washout period and then three weeks of the alternative treatment. Ten-minute treadmill tests (90% VO2peak) were performed with pulmonary function testing (forced vital capacity (FVC), forced expiratory volume in one second (FEV1) and between 25 and 75% (FEF25-75%), and peak expiratory flow rates (PEFR)) measured pre-exercise and 1, 5, 15, and 30 min post-exercise. RESULTS Supplementation led to significant improvements at minute 5 and minute 15 in FVC; FEV1; PERF; FEF25-75% and minute 30 in FEV1 and FEF25-75% post-exercise. CONCLUSION AsA and α-tocopherol may aid the recovery of pulmonary function in subjects with EIA.


Physiological Reports | 2016

Acute supplementation of N‐acetylcysteine does not affect muscle blood flow and oxygenation characteristics during handgrip exercise

Joshua R. Smith; Ryan M. Broxterman; Carl J. Ade; Kara K. Evans; Stephanie P. Kurti; Shane M. Hammer; Thomas J. Barstow; Craig A. Harms

N‐acetylcysteine (NAC; antioxidant and thiol donor) supplementation has improved exercise performance and delayed fatigue, but the underlying mechanisms are unknown. One possibility is NAC supplementation increases limb blood flow during severe‐intensity exercise. The purpose was to determine if NAC supplementation affected exercising arm blood flow and muscle oxygenation characteristics. We hypothesized that NAC would lead to higher limb blood flow and lower muscle deoxygenation characteristics during severe‐intensity exercise. Eight healthy nonendurance trained men (21.8 ± 1.2 years) were recruited and completed two constant power handgrip exercise tests at 80% peak power until exhaustion. Subjects orally consumed either placebo (PLA) or NAC (70 mg/kg) 60 min prior to handgrip exercise. Immediately prior to exercise, venous blood samples were collected for determination of plasma redox balance. Brachial artery blood flow (BABF) was measured via Doppler ultrasound and flexor digitorum superficialis oxygenation characteristics were measured via near‐infrared spectroscopy. Following NAC supplementaiton, plasma cysteine (NAC: 47.2 ± 20.3 μmol/L vs. PLA: 9.6 ± 1.2 μmol/L; P = 0.001) and total cysteine (NAC: 156.2 ± 33.9 μmol/L vs. PLA: 132.2 ± 16.3 μmol/L; P = 0.048) increased. Time to exhaustion was not significantly different (P = 0.55) between NAC (473.0 ± 62.1 sec) and PLA (438.7 ± 58.1 sec). Resting BABF was not different (P = 0.79) with NAC (99.3 ± 31.1 mL/min) and PLA (108.3 ± 46.0 mL/min). BABF was not different (P = 0.42) during exercise or at end‐exercise (NAC: 413 ± 109 mL/min; PLA: 445 ± 147 mL/min). Deoxy‐[hemoglobin+myoglobin] and total‐[hemoglobin+myoglobin] were not significantly different (P = 0.73 and P = 0.54, respectively) at rest or during exercise between conditions. We conclude that acute NAC supplementation does not alter oxygen delivery during exercise in men.


Journal of Strength and Conditioning Research | 2015

Absence of Respiratory Muscle Fatigue in High-Intensity Continuous or Interval Cycling Exercise.

Stephanie P. Kurti; Joshua R. Smith; Sam R. Emerson; Kenneth M. Castinado; Craig A. Harms

Abstract Kurti, SP, Smith, JR, Emerson, SR, Castinado, KM, and Harms, CA. Absence of respiratory muscle fatigue in high-intensity continuous or interval cycling exercise. J Strength Cond Res 29(11): 3171–3176, 2015—Respiratory muscle fatigue (RMF) occurs during prolonged exercise (∼15–20 minutes) at >85% V[Combining Dot Above]O2max. However, RMF has been reported to occur in ∼3–6 minutes in various modes of exercise at a high intensity. It is not known if continuous cycling exercise vs. repeated bouts of high-intensity interval training (HIT) at >85% V[Combining Dot Above]O2max will lead to RMF. We hypothesized that RMF would occur after a constant load test and would be present before end exercise in an HIT protocol. Eight moderately active healthy men (21.7 ± 1.7 years; 181.3 ± 5.2 cm; 81.3 ± 2.3 kg) completed a V[Combining Dot Above]O2max test on a cycle ergometer. Subjects then completed 2 bouts of HIT (7 × 1 minute, 2-minute recovery between intervals) and 3 bouts of continuous exercise (CE) tests at 90% of peak power (determined from an incremental exercise test to exhaustion). Maximal inspiratory pressure (PIMAX) and expiratory pressure (PEMAX) were measured pre- and post-exercise for both HIT and CE and after each interval during HIT. Decreases in postexercise PIMAX and PEMAX compared with baseline were used to determine RMF. There were no differences (p > 0.05) in PIMAX or PEMAX pre- to post-exercise for HIT (PIMAX pre: 134 ± 51, post: 135 ± 50 cmH2O; PEMAX pre: 143 ± 41, post: 148 ± 46 cmH2O) or CE (PIMAX pre: 135 ± 54, post: 133 ± 52 cmH2O; PEMAX pre: 146 ± 46, post: 148 ± 46 cmH2O) indicating RMF was not present following CE and HIT. These data suggest that repeated high-intensity cycling exercise at 90% peak power in a CE or HIT protocol does not lead to RMF.

Collaboration


Dive into the Stephanie P. Kurti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark D. Haub

Kansas State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge