Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephanie Panier is active.

Publication


Featured researches published by Stephanie Panier.


Science | 2007

Orchestration of the DNA-Damage Response by the RNF8 Ubiquitin Ligase

Nadine Kolas; J. Ross Chapman; Shinichiro Nakada; Jarkko Ylanko; Richard Chahwan; Frédéric D. Sweeney; Stephanie Panier; Megan Mendez; Jan Wildenhain; Timothy M. Thomson; Laurence Pelletier; Daniel Durocher

Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.


Cell | 2009

RNF168 Binds and Amplifies Ubiquitin Conjugates on Damaged Chromosomes to Allow Accumulation of Repair Proteins

Carsten Doil; Niels Mailand; Simon Bekker-Jensen; Patrice Menard; Dorthe Helena Larsen; Rainer Pepperkok; Jan Ellenberg; Stephanie Panier; Daniel Durocher; Jiri Bartek; Jiri Lukas; Claudia Lukas

DNA double-strand breaks (DSBs) not only interrupt the genetic information, but also disrupt the chromatin structure, and both impairments require repair mechanisms to ensure genome integrity. We showed previously that RNF8-mediated chromatin ubiquitylation protects genome integrity by promoting the accumulation of repair factors at DSBs. Here, we provide evidence that, while RNF8 is necessary to trigger the DSB-associated ubiquitylations, it is not sufficient to sustain conjugated ubiquitin in this compartment. We identified RNF168 as a novel chromatin-associated ubiquitin ligase with an ability to bind ubiquitin. We show that RNF168 interacts with ubiquitylated H2A, assembles at DSBs in an RNF8-dependent manner, and, by targeting H2A and H2AX, amplifies local concentration of lysine 63-linked ubiquitin conjugates to the threshold required for retention of 53BP1 and BRCA1. Thus, RNF168 defines a new pathway involving sequential ubiquitylations on damaged chromosomes and uncovers a functional cooperation between E3 ligases in genome maintenance.


Cell | 2009

The RIDDLE Syndrome Protein Mediates a Ubiquitin-Dependent Signaling Cascade at Sites of DNA Damage

Grant S. Stewart; Stephanie Panier; Kelly Townsend; Abdallah Al-Hakim; Nadine Kolas; Edward S. Miller; Shinichiro Nakada; Jarkko Ylanko; Signe Olivarius; Megan Mendez; Ceri Oldreive; Jan Wildenhain; Andrea Tagliaferro; Laurence Pelletier; Nadine Taubenheim; Anne Durandy; Philip J. Byrd; Tatjana Stankovic; A. Malcolm R. Taylor; Daniel Durocher

The biological response to DNA double-strand breaks acts to preserve genome integrity. Individuals bearing inactivating mutations in components of this response exhibit clinical symptoms that include cellular radiosensitivity, immunodeficiency, and cancer predisposition. The archetype for such disorders is Ataxia-Telangiectasia caused by biallelic mutation in ATM, a central component of the DNA damage response. Here, we report that the ubiquitin ligase RNF168 is mutated in the RIDDLE syndrome, a recently discovered immunodeficiency and radiosensitivity disorder. We show that RNF168 is recruited to sites of DNA damage by binding to ubiquitylated histone H2A. RNF168 acts with UBC13 to amplify the RNF8-dependent histone ubiquitylation by targeting H2A-type histones and by promoting the formation of lysine 63-linked ubiquitin conjugates. These RNF168-dependent chromatin modifications orchestrate the accumulation of 53BP1 and BRCA1 to DNA lesions, and their loss is the likely cause of the cellular and developmental phenotypes associated with RIDDLE syndrome.


Nature | 2010

Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1

Shinichiro Nakada; Ikue Tai; Stephanie Panier; Abdallah Al-Hakim; Shun-ichiro Iemura; Yu-Chi Juang; Lara O’Donnell; Ayako Kumakubo; Meagan Munro; Frank Sicheri; Anne-Claude Gingras; Tohru Natsume; Toshio Suda; Daniel Durocher

DNA double-strand breaks (DSBs) pose a potent threat to genome integrity. These lesions also contribute to the efficacy of radiotherapy and many cancer chemotherapeutics. DSBs elicit a signalling cascade that modifies the chromatin surrounding the break, first by ATM-dependent phosphorylation and then by RNF8-, RNF168- and BRCA1-dependent regulatory ubiquitination. Here we report that OTUB1, a deubiquitinating enzyme, is an inhibitor of DSB-induced chromatin ubiquitination. Surprisingly, we found that OTUB1 suppresses RNF168-dependent poly-ubiquitination independently of its catalytic activity. OTUB1 does so by binding to and inhibiting UBC13 (also known as UBE2N), the cognate E2 enzyme for RNF168. This unusual mode of regulation is unlikely to be limited to UBC13 because analysis of OTUB1-associated proteins revealed that OTUB1 binds to E2s of the UBE2D and UBE2E subfamilies. Finally, OTUB1 depletion mitigates the DSB repair defect associated with defective ATM signalling, indicating that pharmacological targeting of the OTUB1–UBC13 interaction might enhance the DNA damage response.


DNA Repair | 2010

The ubiquitous role of ubiquitin in the DNA damage response.

Abdallah Al-Hakim; Cristina Escribano-Diaz; Marie-Claude Landry; Lara O’Donnell; Stephanie Panier; Rachel K. Szilard; Daniel Durocher

Abstract Protein ubiquitylation has emerged as an important regulatory mechanism that impacts almost every aspect of the DNA damage response. In this review, we discuss how DNA repair and checkpoint pathways utilize the diversity offered by the ubiquitin conjugation system to modulate the response to genotoxic lesions in space and time. In particular, we will highlight recent work done on the regulation of DNA double-strand breaks signalling and repair by the RNF8/RNF168 E3 ubiquitin ligases, the Fanconi anemia pathway and the role of protein degradation in the enforcement and termination of checkpoint signalling. We also discuss the various functions of deubiquitylating enzymes in these processes along with potential avenues for exploiting the ubiquitin conjugation/deconjugation system for therapeutic purposes.


DNA Repair | 2009

Regulatory ubiquitylation in response to DNA double-strand breaks.

Stephanie Panier; Daniel Durocher

DNA double-strand breaks (DSBs) are highly cytolethal DNA lesions. In response to DSBs, cells initiate a complex response that minimizes their deleterious impact on cellular and organismal physiology. In this review, we discuss the discovery of a regulatory ubiquitylation system that modifies the chromatin that surrounds DNA lesions. This pathway is under the control of RNF8 and RNF168, two E3 ubiquitin ligases that cooperate with UBC13 to promote the relocalization of 53BP1 and BRCA1 to sites of DNA damage. RNF8 and RNF168 orchestrate the recruitment of DNA damage response proteins by catalyzing the ubiquitylation of H2A-type histones and the formation of K63-linked ubiquitin chains on damaged chromatin. Finally, we identify some unresolved issues raised by the discovery of this pathway and discuss the implications of DNA damage-induced ubiquitylation in human disease and development.


The EMBO Journal | 2010

A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses

Caroline E. Lilley; Mira S. Chaurushiya; Chris Boutell; Sébastien Landry; Junghae Suh; Stephanie Panier; Roger D. Everett; Grant S. Stewart; Daniel Durocher; Matthew D. Weitzman

The ICP0 protein of herpes simplex virus type 1 is an E3 ubiquitin ligase and transactivator required for the efficient switch between latent and lytic infection. As DNA damaging treatments are known to reactivate latent virus, we wished to explore whether ICP0 modulates the cellular response to DNA damage. We report that ICP0 prevents accumulation of repair factors at cellular damage sites, acting between recruitment of the mediator proteins Mdc1 and 53BP1. We identify RNF8 and RNF168, cellular histone ubiquitin ligases responsible for anchoring repair factors at sites of damage, as new targets for ICP0‐mediated degradation. By targeting these ligases, ICP0 expression results in loss of ubiquitinated forms of H2A, mobilization of DNA repair proteins and enhanced viral fitness. Our study raises the possibility that the ICP0‐mediated control of histone ubiquitination may link DNA repair, relief of transcriptional repression, and activation of latent viral genomes.


Nature Reviews Molecular Cell Biology | 2013

Push back to respond better: regulatory inhibition of the DNA double-strand break response

Stephanie Panier; Daniel Durocher

Single DNA lesions such as DNA double-strand breaks (DSBs) can cause cell death or trigger genome rearrangements that have oncogenic potential, and so the pathways that mend and signal DNA damage must be highly sensitive but, at the same time, selective and reversible. When initiated, boundaries must be set to restrict the DSB response to the site of the lesion. The integration of positive and, crucially, negative control points involving post-translational modifications such as phosphorylation, ubiquitylation and acetylation is key for building fast, effective responses to DNA damage and for mitigating the impact of DNA lesions on genome integrity.


Molecular Cell | 2012

Tandem Protein Interaction Modules Organize the Ubiquitin-Dependent Response to DNA Double-Strand Breaks

Stephanie Panier; Yosuke Ichijima; Amélie Fradet-Turcotte; Charles C.Y. Leung; Lilia Kaustov; C.H. Arrowsmith; Daniel Durocher

The response to DNA double-strand breaks (DSBs) entails the hierarchical recruitment of proteins orchestrated by ATM-dependent phosphorylation and RNF8-mediated chromatin ubiquitylation. As in most ubiquitin-dependent processes, the ordered accumulation of DNA repair factors at the break site relies on ubiquitin-binding domains (UBDs). However, how UBDs select their ligands is poorly understood, and therefore we sought to uncover the basis for selectivity in the ubiquitin-dependent DSB response. We show that RNF168, its paralog RNF169, RAD18, and the BRCA1-interacting RAP80 protein accumulate at DSB sites through the use of bipartite modules composed of UBDs juxtaposed to peptide motifs that provide specificity. These sequences, named LR motifs (LRMs), are transferable, and we show that the RNF169 LRM2 binds to nucleosomes, the substrates of RNF168. The LRM-based selection of ligands is a parsimonious means to build a highly discrete ubiquitin-based signaling pathway such as the DNA damage response.


PLOS Genetics | 2011

Genomic instability, defective spermatogenesis, immunodeficiency, and cancer in a mouse model of the RIDDLE syndrome.

Toshiyuki Bohgaki; Miyuki Bohgaki; Renato Cardoso; Stephanie Panier; Dimphy Zeegers; Li Li; Grant S. Stewart; Otto Sanchez; M. Prakash Hande; Daniel Durocher; Anne Hakem; Razqallah Hakem

Eukaryotic cells have evolved to use complex pathways for DNA damage signaling and repair to maintain genomic integrity. RNF168 is a novel E3 ligase that functions downstream of ATM,γ-H2A.X, MDC1, and RNF8. It has been shown to ubiquitylate histone H2A and to facilitate the recruitment of other DNA damage response proteins, including 53BP1, to sites of DNA break. In addition, RNF168 mutations have been causally linked to the human RIDDLE syndrome. In this study, we report that Rnf168−/− mice are immunodeficient and exhibit increased radiosensitivity. Rnf168−/− males suffer from impaired spermatogenesis in an age-dependent manner. Interestingly, in contrast to H2a.x−/−, Mdc1−/−, and Rnf8−/− cells, transient recruitment of 53bp1 to DNA double-strand breaks was abolished in Rnf168−/− cells. Remarkably, similar to 53bp1 inactivation, but different from H2a.x deficiency, inactivation of Rnf168 impairs long-range V(D)J recombination in thymocytes and results in long insertions at the class-switch junctions of B-cells. Loss of Rnf168 increases genomic instability and synergizes with p53 inactivation in promoting tumorigenesis. Our data reveal the important physiological functions of Rnf168 and support its role in both γ-H2a.x-Mdc1-Rnf8-dependent and -independent signaling pathways of DNA double-strand breaks. These results highlight a central role for RNF168 in the hierarchical network of DNA break signaling that maintains genomic integrity and suppresses cancer development in mammals.

Collaboration


Dive into the Stephanie Panier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Hakem

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge