Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stéphanie Ratté is active.

Publication


Featured researches published by Stéphanie Ratté.


The Journal of Neuroscience | 2006

Nonlinear Interaction between Shunting and Adaptation Controls a Switch between Integration and Coincidence Detection in Pyramidal Neurons

Steven A. Prescott; Stéphanie Ratté; Yves De Koninck; Terrence J. Sejnowski

The membrane conductance of a pyramidal neuron in vivo is substantially increased by background synaptic input. Increased membrane conductance, or shunting, does not simply reduce neuronal excitability. Recordings from hippocampal pyramidal neurons using dynamic clamp revealed that adaptation caused complete cessation of spiking in the high conductance state, whereas repetitive spiking could persist despite adaptation in the low conductance state. This behavior was reproduced in a phase plane model and was explained by a shunting-induced increase in voltage threshold. The increase in threshold allows greater activation of the M current (I M) at subthreshold potentials and reduces the minimum adaptation required to stabilize the system; in contrast, activation of the afterhyperpolarization current is unaffected by the increase in threshold and therefore remains unable to stop repetitive spiking. The nonlinear interaction between shunting and I M has other important consequences. First, timing of spikes elicited by brief stimuli is more precise when background spikes elicited by sustained input are prohibited, as occurs exclusively with I M-mediated adaptation in the high conductance state. Second, activation of I M at subthreshold potentials, which is increased in the high conductance state, hyperpolarizes average membrane potential away from voltage threshold, allowing only large, rapid fluctuations to reach threshold and elicit spikes. These results suggest that the shift from a low to high conductance state in a pyramidal neuron is accompanied by a switch from encoding time-averaged input with firing rate to encoding transient inputs with precisely timed spikes, in effect, switching the operational mode from integration to coincidence detection.


The Journal of Physiology | 2004

Synapse-specific mGluR1-dependent long-term potentiation in interneurones regulates mouse hippocampal inhibition

Valérie Lapointe; Stéphanie Ratté; Ariane Croce; François Conquet; Jean-Claude Lacaille

Hippocampal CA1 inhibitory interneurones control the excitability and synchronization of pyramidal cells, and participate in hippocampal synaptic plasticity. Pairing theta‐burst stimulation (TBS) with postsynaptic depolarization, we induced long‐term potentiation (LTP) of putative single‐fibre excitatory postsynaptic currents (EPSCs) in stratum oriens/alveus (O/A) interneurones of mouse hippocampal slices. LTP induction was absent in metabotropic glutamate receptor 1 (mGluR1) knockout mice, was correlated with the postsynaptic presence of mGluR1a, and required a postsynaptic Ca2+ rise. Changes in paired‐pulse facilitation and coefficient of variation indicated that LTP expression involved presynaptic mechanisms. LTP was synapse specific, occurring selectively at synapses modulated by presynaptic group II, but not group III, mGluRs. Furthermore, the TBS protocol applied in O/A induced a long‐term increase of polysynaptic inhibitory responses in CA1 pyramidal cells, that was absent in mGluR1 knockout mice. These results uncover the mechanisms of a novel form of interneurone synaptic plasticity that can adaptively regulate inhibition of hippocampal pyramidal cells.


Neuron | 2013

Impact of Neuronal Properties on Network Coding: Roles of Spike Initiation Dynamics and Robust Synchrony Transfer

Stéphanie Ratté; Sungho Hong; Erik De Schutter; Steven A. Prescott

Neural networks are more than the sum of their parts, but the properties of those parts are nonetheless important. For instance, neuronal properties affect the degree to which neurons receiving common input will spike synchronously, and whether that synchrony will propagate through the network. Stimulus-evoked synchrony can help or hinder network coding depending on the type of code. In this Perspective, we describe how spike initiation dynamics influence neuronal input-output properties, how those properties affect synchronization, and how synchronization affects network coding. We propose that synchronous and asynchronous spiking can be used to multiplex temporal (synchrony) and rate coding and discuss how pyramidal neurons would be well suited for that task.


The Journal of Neuroscience | 2012

Single Neuron Firing Properties Impact Correlation-Based Population Coding

Sungho Hong; Stéphanie Ratté; Steven A. Prescott; Erik De Schutter

Correlated spiking has been widely observed, but its impact on neural coding remains controversial. Correlation arising from comodulation of rates across neurons has been shown to vary with the firing rates of individual neurons. This translates into rate and correlation being equivalently tuned to the stimulus; under those conditions, correlated spiking does not provide information beyond that already available from individual neuron firing rates. Such correlations are irrelevant and can reduce coding efficiency by introducing redundancy. Using simulations and experiments in rat hippocampal neurons, we show here that pairs of neurons receiving correlated input also exhibit correlations arising from precise spike-time synchronization. Contrary to rate comodulation, spike-time synchronization is unaffected by firing rate, thus enabling synchrony- and rate-based coding to operate independently. The type of output correlation depends on whether intrinsic neuron properties promote integration or coincidence detection: “ideal” integrators (with spike generation sensitive to stimulus mean) exhibit rate comodulation, whereas ideal coincidence detectors (with spike generation sensitive to stimulus variance) exhibit precise spike-time synchronization. Pyramidal neurons are sensitive to both stimulus mean and variance, and thus exhibit both types of output correlation proportioned according to which operating mode is dominant. Our results explain how different types of correlations arise based on how individual neurons generate spikes, and why spike-time synchronization and rate comodulation can encode different stimulus properties. Our results also highlight the importance of neuronal properties for population-level coding insofar as neural networks can employ different coding schemes depending on the dominant operating mode of their constituent neurons.


The Journal of Neuroscience | 2011

ClC-2 Channels Regulate Neuronal Excitability, Not Intracellular Chloride Levels

Stéphanie Ratté; Steven A. Prescott

Synaptic inhibition by GABAA receptors requires a transmembrane chloride gradient. Hyperpolarization or shunting results from outward current produced by chloride flowing down this gradient, into the cell. Chloride influx necessarily depletes the chloride gradient. Therefore, mechanisms that replenish the gradient (by reducing intracellular chloride concentration, [Cl−]i) are crucial for maintaining the efficacy of GABAA receptor-mediated inhibition. ClC-2 is an inward-rectifying chloride channel that is thought to help extrude chloride because inward rectification should, in principle, allow ClC-2 to act as a one-way chloride exit valve. But chloride efflux via ClC-2 nevertheless requires an appropriate driving force. Using computer modeling, we reproduced voltage-clamp experiments showing chloride efflux via ClC-2, but testing the same model under physiological conditions revealed that ClC-2 normally leaks chloride into the cell. The discrepancy is explained by the driving force conditions that exist under artificial versus physiological conditions, and by the fact that ClC-2 rectification is neither complete nor instantaneous. Thus, contrary to previous assertions that ClC-2 helps maintain synaptic inhibition by lowering [Cl−]i, our simulations show that ClC-2 mediates chloride influx, thus producing outward current and directly reducing excitability. To test how ClC-2 functions in real neurons, we used dynamic clamp to insert virtual ClC-2 channels into rat CA1 pyramidal cells with and without native ClC-2 channels blocked. Experiments confirmed that ClC-2 reduces spiking independently of inhibitory synaptic transmission. Our results highlight the importance of considering driving force when inferring how a channel functions under physiological conditions.


Current Opinion in Neurobiology | 2012

Pain processing by spinal microcircuits: afferent combinatorics.

Steven A. Prescott; Stéphanie Ratté

Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input. How stimuli give rise to these percepts has been debated for over a century. Recent work supports the view that primary afferents are highly specialized to transduce and encode specific stimulus modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch) support convergence rather than specificity in central circuits. We outline how peripheral specialization together with central convergence could enable spinal microcircuits to combine inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus formed through computations like normalization. These issues will be discussed alongside recent advances in our understanding of microcircuitry in the superficial dorsal horn.


eLife | 2014

Criticality and degeneracy in injury-induced changes in primary afferent excitability and the implications for neuropathic pain

Stéphanie Ratté; Yi Zhu; Kwan Yeop Lee; Steven A. Prescott

Neuropathic pain remains notoriously difficult to treat despite numerous drug targets. Here, we offer a novel explanation for this intractability. Computer simulations predicted that qualitative changes in primary afferent excitability linked to neuropathic pain arise through a switch in spike initiation dynamics when molecular pathologies reach a tipping point (criticality), and that this tipping point can be reached via several different molecular pathologies (degeneracy). We experimentally tested these predictions by pharmacologically blocking native conductances and/or electrophysiologically inserting virtual conductances. Multiple different manipulations successfully reproduced or reversed neuropathic changes in primary afferents from naïve or nerve-injured rats, respectively, thus confirming the predicted criticality and its degenerate basis. Degeneracy means that several different molecular pathologies are individually sufficient to cause hyperexcitability, and because several such pathologies co-occur after nerve injury, that no single pathology is uniquely necessary. Consequently, single-target-drugs can be circumvented by maladaptive plasticity in any one of several ion channels. DOI: http://dx.doi.org/10.7554/eLife.02370.001


Frontiers in Cellular Neuroscience | 2015

Subthreshold membrane currents confer distinct tuning properties that enable neurons to encode the integral or derivative of their input.

Stéphanie Ratté; Milad Lankarany; Young-Ah Rho; Adam Patterson; Steven A. Prescott

Neurons rely on action potentials, or spikes, to encode information. But spikes can encode different stimulus features in different neurons. We show here through simulations and experiments how neurons encode the integral or derivative of their input based on the distinct tuning properties conferred upon them by subthreshold currents. Slow-activating subthreshold inward (depolarizing) current mediates positive feedback control of subthreshold voltage, sustaining depolarization and allowing the neuron to spike on the basis of its integrated stimulus waveform. Slow-activating subthreshold outward (hyperpolarizing) current mediates negative feedback control of subthreshold voltage, truncating depolarization and forcing the neuron to spike on the basis of its differentiated stimulus waveform. Depending on its direction, slow-activating subthreshold current cooperates or competes with fast-activating inward current during spike initiation. This explanation predicts that sensitivity to the rate of change of stimulus intensity differs qualitatively between integrators and differentiators. This was confirmed experimentally in spinal sensory neurons that naturally behave as specialized integrators or differentiators. Predicted sensitivity to different stimulus features was confirmed by covariance analysis. Integration and differentiation, which are themselves inverse operations, are thus shown to be implemented by the slow feedback mediated by oppositely directed subthreshold currents expressed in different neurons.


Current Opinion in Neurobiology | 2016

Afferent hyperexcitability in neuropathic pain and the inconvenient truth about its degeneracy

Stéphanie Ratté; Steven A. Prescott

Neuropathic pain, which arises from damage to the nervous system, is a major unmet clinical challenge. Reversing the neuronal hyperexcitability induced by nerve damage is a logical treatment strategy but has proven frustratingly difficult. Here, we propose a novel explanation for that difficulty. Changes in several different ion channels are individually sufficient to cause hyperexcitability in primary somatosensory neurons. Despite offering multiple drug targets, this scenario is problematic: if multiple sufficient changes are triggered by nerve injury, then no single change is necessary for hyperexcitability. This so-called degeneracy compromises therapeutic interventions because drug effects on any one ion channel can be circumvented by changes occurring in other ion channels. Overcoming degeneracy demands a more integrative approach to drug discovery.


Epilepsy Research | 2006

Cell type-specific changes in spontaneous and minimally evoked excitatory synaptic activity in hippocampal CA1 interneurons of kainate-treated rats.

Yaël Perez; Stéphanie Ratté; Nathalie T. Sanon; Valérie Lapointe; Jean-Claude Lacaille

The epileptiform activity in the kainic acid (KA) model of epilepsy arises from complex changes in excitation and inhibition. To assess the involvement of excitatory drive onto inhibitory interneurons in this epileptiform activity, we examined changes in spontaneous and minimally evoked excitatory post-synaptic currents (sEPSCs and eEPSCs) in CA1 interneurons in stratum oriens/alveus (O/A) and stratum radiatum (RAD) in rat hippocampal slices after KA treatment. The frequency and amplitude of sEPSCs and the amplitude of eEPSCs were unchanged in O/A interneurons, but the EPSC kinetics were significantly slower. These changes appear to be due to altered kinetics and voltage-dependent properties of the NMDA component of EPSCs in O/A interneurons. In contrast, sEPSCs and eEPSCs in RAD interneurons did not change after KA treatment. The distinct changes in excitatory synaptic activity in interneurons differentially involved in feedback (O/A) versus feedforward (RAD) inhibition suggest a cell type-specific reorganization of excitatory synapses after KA treatment. These modifications in excitatory input to interneurons could contribute to the maintenance of inhibition of CA1 pyramidal cells after KA treatment, or may also create network conditions favourable to epileptiform activity.

Collaboration


Dive into the Stéphanie Ratté's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Terrence J. Sejnowski

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Erik De Schutter

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sungho Hong

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ariane Croce

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge