Stephanie Tseng-Rogenski
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephanie Tseng-Rogenski.
American Journal of Pathology | 2010
Stephanie Tseng-Rogenski; Jason Gee; Kathleen Woods Ignatoski; Lakshmi P. Kunju; Amanda Bucheit; Hallie J. Kintner; David S. Morris; Christopher Tallman; Joshua Evron; Christopher G. Wood; H. Barton Grossman; Cheryl T. Lee; Monica Liebert
Prostaglandin E2, which is known to contribute to cancer progression, is inactivated by the catabolic enzyme, 15-hydroxyprostaglandin dehydrogenase (PGDH), which has tumor-suppressor activity in lung, colon, breast, and gastric cancers. Therefore, we evaluated the expression of PGDH in human bladder cancer tissue specimens and cell lines. Immunoperoxidase staining of bladder cancer tissues demonstrated that (1) PGDH is highly expressed by normal urothelial cells but (2) reduced in many low stage (Ta/Tis) bladder cancers, and (3) PGDH is completely lost in most invasive bladder cancers. Of eight cancer cell lines tested, only two relatively well-differentiated bladder cancer cell lines, RT4 and UM-UC9, expressed PGDH. Moreover, inhibition of PGDH expression in well-differentiated RT4 cells using small inhibitory RNA or short hairpin RNA resulted in a more aggressive phenotype with increased motility and anchorage-independent growth. Additionally, PGDH knockdown affected prostaglandin E2 signaling as measured by cAMP generation. These data indicate that loss of PGDH expression contributes to a more malignant bladder cancer phenotype and may be necessary for bladder cancer development and/or progression.
Gastroenterology | 2015
Stephanie Tseng-Rogenski; Yasushi Hamaya; Daniel Y. Choi; John M. Carethers
BACKGROUND & AIMS Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is the most common DNA mismatch repair defect in colorectal cancers, observed in approximately 60% of specimens. This acquired genotype correlates with metastasis and poor outcomes for patients, and is associated with intra-epithelial inflammation and heterogeneous nuclear levels of the mismatch repair protein hMSH3. Inflammation and accompanying oxidative stress can cause hMSH3 to change its intracellular location, but little is known about the source of oxidative stress in cancer cells. We investigated whether cytokines mediate this process. METHODS We analyzed levels of interleukin 6 (IL6) and its receptor (IL6R) in human colon and lung cancer cell lines by flow cytometry and enzyme-linked immunosorbent assay; proteins were localized by immunofluorescence and immunoblot analyses. IL6 signaling was blocked with antibodies against IL6, soluble glycoprotein 130 Fc fragments, and the signal transducers and activators of transcription 3 inhibitor NSC74859; a constitutively active form of STAT3 was expressed in colon and lung cancer cell lines to replicate IL6R signaling. EMAST was detected by DNA fragment analysis. Immunohistochemistry was used to examine levels of IL6 in 20 colorectal tumor and adjacent nontumor tissues. RESULTS Incubation of colon and lung cancer cell lines with IL6, but not other cytokines, caused hMSH3, but no other mismatch repair proteins, to move from the nucleus to the cytosol after generation of oxidative stress; inhibition of IL6 signaling prevented this shift. Expression of constitutively active STAT3 also caused hMSH3 to translocate from the nucleus to the cytoplasm in cancer cell lines. Incubation of cells with IL6 led to tetranucleotide frameshifts, the signature for EMAST. EMAST-positive colorectal tumors had significantly higher levels of IL6 than EMAST-negative tumors. CONCLUSIONS IL6 signaling disrupts the nuclear localization of hMSH3 and DNA repair, leading to EMAST in cancer cell lines. Inflammatory cytokines might therefore promote genetic alterations in human cancer cells.
PLOS ONE | 2012
Stephanie Tseng-Rogenski; Heekyung Chung; Maike B. Wilk; Shuai Zhang; Moriya Iwaizumi; John M. Carethers
Background Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is a genetic signature observed in 60% of sporadic colorectal cancers (CRCs). Unlike microsatellite unstable CRCs where hypermethylation of the DNA mismatch repair (MMR) gene hMLH1’s promoter is causal, the precise cause of EMAST is not clearly defined but points towards hMSH3 deficiency. Aim To examine if hMSH3 deficiency causes EMAST, and to explore mechanisms for its deficiency. Methods We measured −4 bp framshifts at D8S321 and D20S82 loci within EGFP-containing constructs to determine EMAST formation in MMR-proficient, hMLH1−/−, hMSH6−/−, and hMSH3−/− CRC cells. We observed the subcellular location of hMSH3 with oxidative stress. Results D8S321 mutations occurred 31-and 40-fold higher and D20S82 mutations occurred 82-and 49-fold higher in hMLH1−/− and hMSH3−/− cells, respectively, than in hMSH6−/− or MMR-proficient cells. hMSH3 knockdown in MMR-proficient cells caused higher D8S321 mutation rates (18.14 and 11.14×10−4 mutations/cell/generation in two independent clones) than scrambled controls (0 and 0.26×10−4 mutations/cell/generation; p<0.01). DNA sequencing confirmed the expected frameshift mutations with evidence for ongoing mutations of the constructs. Because EMAST-positive tumors are associated with inflammation, we subjected MMR-proficient cells to oxidative stress via H2O2 to examine its effect on hMSH3. A reversible nuclear-to-cytosol shift of hMSH3 was observed upon H2O2 treatment. Conclusion EMAST is dependent upon the MMR background, with hMSH3−/− more prone to frameshift mutations than hMSH6−/−, opposite to frameshift mutations observed for mononucleotide repeats. hMSH3−/− mimics complete MMR failure (hMLH1−/−) in inducing EMAST. Given the observed heterogeneous expression of hMSH3 in CRCs with EMAST, hMSH3-deficiency appears to be the event that commences EMAST. Oxidative stress, which causes a shift of hMSH3’s subcellular location, may contribute to an hMSH3 loss-of-function phenotype by sequestering it to the cytosol.
American Journal of Physiology-renal Physiology | 2009
Stephanie Tseng-Rogenski; Monica Liebert
Interleukin-8 (IL-8; CXCL8) has been shown to play a role in multiple cellular processes. Here, we report an additional role of IL-8 as a growth and essential survival factor for normal human urothelial cells. Supplementing exogenous recombinant human IL-8 to normal urothelial cells promoted cell growth through the Akt pathway. Inhibition of IL-8 expression by small inhibitory RNA (siRNA) caused normal urothelial cells to die. Addition of recombinant human IL-8 rescued the normal urothelial cells treated with IL-8 siRNA. This rescue effect could be blocked by antibodies to the IL-8 receptor CXCR1 but not by CXCR2, suggesting that normal urothelial cells normally have IL-8 autocrine or paracrine activity for survival and growth mediated by CXCR1. IL-8 mRNA levels were lower in samples from patients with interstitial cystitis, a urinary bladder disorder associated with urothelial cell dysfunction and/or loss. Taken together, these results suggest that IL-8 is an important normal urothelial growth factor and is necessary for normal urothelial cell survival in vitro and in vivo. Lower IL-8 expression levels in the urinary bladder may contribute to pathophysiology of interstitial cystitis.
Genes | 2015
John M. Carethers; Minoru Koi; Stephanie Tseng-Rogenski
DNA mismatch repair (MMR) function is critical for correcting errors coincident with polymerase-driven DNA replication, and its proteins are frequent targets for inactivation (germline or somatic), generating a hypermutable tumor that drives cancer progression. The biomarker for defective DNA MMR is microsatellite instability-high (MSI-H), observed in ~15% of colorectal cancers, and defined by mono- and dinucleotide microsatellite frameshift mutations. MSI-H is highly correlated with loss of MMR protein expression, is commonly diploid, is often located in the right side of the colon, prognosticates good patient outcome, and predicts poor efficacy with 5-fluorouracil treatment. Elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) is another form of MSI at tetranucleotide repeats that has been observed in multiple cancers, but its etiology and clinical relevance to patient care has only been recently illuminated. Specifically, EMAST is an acquired somatic defect observed in up to 60% of colorectal cancers and caused by unique dysfunction of the DNA MMR protein MSH3 (and its DNA MMR complex MutSβ, a heterodimer of MSH2-MSH3), and in particular a loss-of-function phenotype due to a reversible shift from its normal nuclear location into the cytosol in response to oxidative stress and the pro-inflammatory cytokine interleukin-6. Tumor hypoxia may also be a contributor. Patients with EMAST colorectal cancers show diminished prognosis compared to patients without the presence of EMAST in their cancer. In addition to defective DNA MMR recognized by tetranucleotide (and di- and tri-nucleotide) frameshifts, loss of MSH3 also contributes to homologous recombination-mediated repair of DNA double stranded breaks, indicating the MSH3 dysfunction is a complex defect for cancer cells that generates not only EMAST but also may contribute to chromosomal instability and aneuploidy. Areas for future investigation for this most common DNA MMR defect among colorectal cancers include relationships between EMAST and chemotherapy response, patient outcome with aneuploid changes in colorectal cancers, target gene mutation analysis, and mechanisms related to inflammation-induced compartmentalization and inactivation for MSH3.
PLOS ONE | 2011
Akihiro Tajima; Moriya Iwaizumi; Stephanie Tseng-Rogenski; Betty L. Cabrera; John M. Carethers
Background Patients with advanced microsatellite unstable colorectal cancers do not show a survival benefit from 5-fluorouracil (5-FU)-based chemotherapy. We and others have shown that the DNA mismatch repair (MMR) complex hMutSα binds 5-FU incorporated into DNA. Although hMutSß is known to interact with interstrand crosslinks (ICLs) induced by drugs such as cisplatin and psoralen, it has not been demonstrated to interact with 5-FU incorporated into DNA. Our aim was to examine if hMutSß plays a role in 5-FU recognition. Methods We compared the normalized growth of 5-FU treated cells containing either or both mismatch repair complexes using MTT and clonogenic assays. We utilized oligonucleotides containing 5-FU and purified baculovirus-synthesized hMutSα and hMutSß in electromobility shift assays (EMSA) and further analyzed binding using surface plasmon resonance. Results MTT and clonogenic assays after 5-FU treatment demonstrated the most cytotoxicity in cells with both hMutSα and hMutSß, intermediate cytotoxicity in cells with hMutSα alone, and the least cytotoxicity in cells with hMutSß alone, hMutSß binds 5-FU-modified DNA, but its relative binding is less than the binding of 5-FU-modified DNA by hMutSα. Conclusion Cytotoxicity induced by 5-FU is dependent on intact DNA MMR, with relative cell death correlating directly with hMutSα and/or hMutSß 5-FU binding ability (hMutSα>hMutSß). The MMR complexes provide a hierarchical chemosensitivity for 5-FU cell death, and may have implications for treatment of patients with certain MMR-deficient tumors.
Cancer Biology & Therapy | 2011
Moriya Iwaizumi; Stephanie Tseng-Rogenski; John M. Carethers
Background: 5-fluorouracil (5FU)-based chemotherapy is the standard treatment for advanced stage colorectal cancer (CRC) patients. Several groups including ours have reported that stage II-III colorectal cancer patients whose tumors retain DNA Mismatch repair (MMR) function derive a benefit from 5FU, but patients with tumors that lost MMR function do not. Although, MMR recognition of 5FU incorporated in DNA has been demonstrated biochemically, it has not been demonstrated within cells to execute 5FU cytotoxicity. Aim: To establish an efficient construction model for 5FU within DNA and demonstrate that 5FU incorporated into DNA can trigger cellular cytotoxicity executed by the DNA MMR system. Methods: We constructed a 5FdU-containing heteroduplex plasmid (5FdU plasmid) and 5FdU-containing linear dsDNA (5FdU linear DNA), and transfected these into MMR-proficient, hMLH1-/- and hMSH6-/- cells. We observed cell growth characteristics of both transfectants for 5FU-induced cytotoxicity. Results: MMR- proficient cells transfected with the 5FdU plasmid but not the 5FdU linear DNA showed reduced cell proliferation by MTS and clonogenic assays, and demonstrated cell morphological change consistent with apoptosis. In MMR-deficient cells, neither the 5FdU plasmid nor 5FdU linear DNA induced cell growth or morphological changes different from controls. Conclusion: 5FdU as heteroduplex DNA in plasmid but not linear form triggered cytotoxicity in a MMR-dependent manner. Thus 5FU incorporated into DNA, separated from its effects on RNA, can be recognized by DNA MMR to trigger cell death.
The Prostate | 2010
Mohamed S. Arredouani; Stephanie Tseng-Rogenski; Brent K. Hollenbeck; June Escara-Wilke; Karen R. Leander; Deborah Defeo-Jones; Clara Hwang; Martin G. Sanda
In recent years, there has been an increasing interest in targeting human prostate tumor‐associated antigens (TAAs) for prostate cancer immunotherapy as an alternative to other therapeutic modalities. However, immunologic tolerance to TAA poses a significant obstacle to effective, TAA‐targeted immunotherapy. We sought to investigate whether androgen deprivation would result in circumventing immune tolerance to prostate TAA by impacting CD8 cell responses.
PLOS ONE | 2015
Yasushi Hamaya; Carla Guarinos; Stephanie Tseng-Rogenski; Moriya Iwaizumi; Ritabrata Das; Rodrigo Jover; Antoni Castells; Xavier Llor; Montserrat Andreu; John M. Carethers
Elevated Microsatellite Alterations at Selected Tetranucleotide repeats (EMAST) is a genetic signature found in up to 60% of colorectal cancers (CRCs) that is caused by somatic dysfunction of the DNA mismatch repair (MMR) protein hMSH3. We have previously shown in vitro that recognition of 5-fluorouracil (5-FU) within DNA and subsequent cytotoxicity was most effective when both hMutSα (hMSH2-hMSH6 heterodimer) and hMutSβ (hMSH2-hMSH3 heterodimer) MMR complexes were present, compared to hMutSα > hMutSβ alone. We tested if patients with EMAST CRCs (hMutSβ defective) had diminished response to adjuvant 5-FU chemotherapy, paralleling in vitro findings. We analyzed 230 patients with stage II/III sporadic colorectal cancers for which we had 5-FU treatment and survival data. Archival DNA was analyzed for EMAST (>2 of 5 markers mutated among UT5037, D8S321, D9S242, D20S82, D20S85 tetranucleotide loci). Kaplan-Meier survival curves were generated and multivariate analysis was used to determine contribution to risk. We identified 102 (44%) EMAST cancers. Ninety-four patients (41%) received adjuvant 5-FU chemotherapy, and median follow-up for all patients was 51 months. Patients with EMAST CRCs demonstrated improved survival with adjuvant 5FU to the same extent as patients with non-EMAST CRCs (P<0.05). We observed no difference in survival between patients with stage II/III EMAST and non-EMAST cancers (P = 0.36). There is improved survival for stage II/III CRC patients after adjuvant 5-FU-based chemotherapy regardless of EMAST status. The loss of contribution of hMSH3 for 5-FU cytotoxicity may not adversely affect patient outcome, contrasting patients whose tumors completely lack DNA MMR function (MSI-H).
Mutation Research | 2013
Moriya Iwaizumi; Stephanie Tseng-Rogenski; John M. Carethers
Human DNA mismatch repair (MMR) recognizes and binds 5-fluorouracil (5FU) incorporated into DNA and triggers a MMR-dependent cell death. Absence of MMR in a patients colorectal tumor abrogates 5FUs beneficial effects on survival. Changes in the tumor microenvironment like low extracellular pH (pHe) may diminish DNA repair, increasing genomic instability. Here, we explored if low pHe modifies MMR recognition of 5FU, as 5FU can exist in ionized and non-ionized forms depending on pH. We demonstrate that MMR-proficient cells at low pHe show downregulation of hMLH1, whereas expression of TDG and MBD4, known DNA glycosylases for base excision repair (BER) that can remove 5FU from DNA, were unchanged. We show in vitro that 5FU within DNA pairs with adenine (A) at high and low pH (in absence of MMR and BER). Surprisingly, 5FdU:G was repaired to C:G in hMLH1-deficient cells cultured at both low and normal pHe, similar to MMR-proficient cells. Moreover, both hMSH6 and hMSH3, components of hMutSα and hMutSβ, respectively, bound 5FU within DNA (hMSH6>hMSH3) but is influenced by hMLH1. We conclude that an acidic tumor microenvironment triggers downregulation of hMLH1, potentially removing the execution component of MMR for 5FU cytotoxicity, whereas other mechanisms remain stable to implement overall 5FU sensitivity.