Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen A. Bustin is active.

Publication


Featured researches published by Stephen A. Bustin.


Clinical Chemistry | 2009

The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Jo Vandesompele; Carl T. Wittwer

BACKGROUND Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a readers ability to evaluate critically the quality of the results presented or to repeat the experiments. CONTENT The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. SUMMARY Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.


Genes and Immunity | 2005

Real-time RT-PCR normalisation; strategies and considerations

Jim F. Huggett; Keertan Dheda; Stephen A. Bustin; Alimuddin Zumla

Real-time RT-PCR has become a common technique, no longer limited to specialist core facilities. It is in many cases the only method for measuring mRNA levels of vivo low copy number targets of interest for which alternative assays either do not exist or lack the required sensitivity. Benefits of this procedure over conventional methods for measuring RNA include its sensitivity, large dynamic range, the potential for high throughout as well as accurate quantification. To achieve this, however, appropriate normalisation strategies are required to control for experimental error introduced during the multistage process required to extract and process the RNA. There are many strategies that can be chosen; these include normalisation to sample size, total RNA and the popular practice of measuring an internal reference or housekeeping gene. However, these methods are frequently applied without appropriate validation. In this review we discuss the relative merits of different normalisation strategies and suggest a method of validation that will enable the measurement of biologically meaningful results.


Nature Protocols | 2006

Quantification of mRNA using real-time RT-PCR

Tania Nolan; Rebecca E Hands; Stephen A. Bustin

The real-time reverse transcription polymerase chain reaction (RT-qPCR) addresses the evident requirement for quantitative data analysis in molecular medicine, biotechnology, microbiology and diagnostics and has become the method of choice for the quantification of mRNA. Although it is often described as a “gold” standard, it is far from being a standard assay. The significant problems caused by variability of RNA templates, assay designs and protocols, as well as inappropriate data normalization and inconsistent data analysis, are widely known but also widely disregarded. As a first step towards standardization, we describe a series of RT-qPCR protocols that illustrate the essential technical steps required to generate quantitative data that are reliable and reproducible. We would like to emphasize, however, that RT-qPCR data constitute only a snapshot of information regarding the quantity of a given transcript in a cell or tissue. Any assessment of the biological consequences of variable mRNA levels must include additional information regarding regulatory RNAs, protein levels and protein activity. The entire protocol described here, encompassing all stages from initial assay design to reliable qPCR data analysis, requires approximately 15 h.


BioTechniques | 2004

Validation of housekeeping genes for normalizing RNA expression in real-time PCR.

Keertan Dheda; Jim F. Huggett; Stephen A. Bustin; Margaret Johnson; G. A. W. Rook; Alimuddin Zumla

Analysis of RNA expression using techniques like real-time PCR has traditionally used reference or housekeeping genes to control for error between samples. This practice is being questioned as it becomes increasingly clear that some housekeeping genes may vary considerably in certain biological samples. We used real-time reverse transcription PCR (RT-PCR) to assess the levels of 13 housekeeping genes expressed in peripheral blood mononuclear cell culture and whole blood from healthy individuals and those with tuberculosis. Housekeeping genes were selected from conventionally used ones and from genes reported to be invariant in human T cell culture. None of the commonly used housekeeping genes [e.g., glyceraldehyde-phosphate-dehydrogenase (GAPDH)] were found to be suitable as internal references, as they were highly variable (>30-fold maximal variability). Furthermore, genes previously found to be invariant in human T cell culture also showed large variation in RNA expression (>34-fold maximal variability). Genes that were invariant in blood were highly variable in peripheral blood mononuclear cell culture. Our data show that RNA specifying human acidic ribosomal protein was the most suitable housekeeping gene for normalizing mRNA levels in human pulmonary tuberculosis. Validations of housekeeping genes are highly specific for a particular experimental model and are a crucial component in assessing any new model.


Analytical Biochemistry | 2002

Quantitative real-time reverse transcription polymerase chain reaction: normalization to rRNA or single housekeeping genes is inappropriate for human tissue biopsies ☆

Carmela Tricarico; Pamela Pinzani; Simonetta Bianchi; Milena Paglierani; V. Distante; Mario Pazzagli; Stephen A. Bustin; Claudio Orlando

Careful normalization is essential when using quantitative reverse transcription polymerase chain reaction assays to compare mRNA levels between biopsies from different individuals or cells undergoing different treatment. Generally this involves the use of internal controls, such as mRNA specified by a housekeeping gene, ribosomal RNA (rRNA), or accurately quantitated total RNA. The aim of this study was to compare these methods and determine which one can provide the most accurate and biologically relevant quantitative results. Our results show significant variation in the expression levels of 10 commonly used housekeeping genes and 18S rRNA, both between individuals and between biopsies taken from the same patient. Furthermore, in 23 breast cancers samples mRNA and protein levels of a regulated gene, vascular endothelial growth factor (VEGF), correlated only when normalized to total RNA, as did microvessel density. Finally, mRNA levels of VEGF and the most popular housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were significantly correlated in the colon. Our results suggest that the use of internal standards comprising single housekeeping genes or rRNA is inappropriate for studies involving tissue biopsies.


Clinical Chemistry | 2013

The Digital MIQE Guidelines: Minimum Information for Publication of Quantitative Digital PCR Experiments

Jim F. Huggett; Carole A. Foy; Vladimir Benes; Kerry R. Emslie; Jeremy A. Garson; Ross J. Haynes; Jan Hellemans; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Jo Vandesompele; Carl T. Wittwer; Stephen A. Bustin

There is growing interest in digital PCR (dPCR) because technological progress makes it a practical and increasingly affordable technology. dPCR allows the precise quantification of nucleic acids, facilitating the measurement of small percentage differences and quantification of rare variants. dPCR may also be more reproducible and less susceptible to inhibition than quantitative real-time PCR (qPCR). Consequently, dPCR has the potential to have a substantial impact on research as well as diagnostic applications. However, as with qPCR, the ability to perform robust meaningful experiments requires careful design and adequate controls. To assist independent evaluation of experimental data, comprehensive disclosure of all relevant experimental details is required. To facilitate this process we present the Minimum Information for Publication of Quantitative Digital PCR Experiments guidelines. This report addresses known requirements for dPCR that have already been identified during this early stage of its development and commercial implementation. Adoption of these guidelines by the scientific community will help to standardize experimental protocols, maximize efficient utilization of resources, and enhance the impact of this promising new technology.


Clinical Science | 2005

Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis

Stephen A. Bustin; Reinhold Dietrich Mueller

qRT-PCR (real-time reverse transcription-PCR) has become the benchmark for the detection and quantification of RNA targets and is being utilized increasingly in novel clinical diagnostic assays. Quantitative results obtained by this technology are not only more informative than qualitative data, but simplify assay standardization and quality management. qRT-PCR assays are most established for the detection of viral load and therapy monitoring, and the development of SARS (severe acute respiratory syndrome)-associated coronavirus qRT-PCR assays provide a textbook example of the value of this technology for clinical diagnostics. The widespread use of qRT-PCR assays for diagnosis and the detection of disease-specific prognostic markers in leukaemia patients provide further examples of their usefulness. Their value for the detection of disease-associated mRNA expressed by circulating tumour cells in patients with solid malignancies is far less apparent, and the clinical significance of results obtained from such tests remains unclear. This is because of conceptual reservations as well as technical limitations that can interfere with the diagnostic specificity of qRT-PCR assays. Therefore, although it is evident that qRT-PCR assay has become a useful and important technology in the clinical diagnostic laboratory, it must be used appropriately and it is essential to be aware of its limitations if it is to fulfil its potential.


The Lancet | 2001

Molecular quantification and mapping of lymph-node micrometastases in cervical cancer.

Philippe O. Van Trappen; Valerie G. Gyselman; David G Lowe; Andy Ryan; David H. Oram; Peter Bosze; Anthony Weekes; John H Shepherd; Sina Dorudi; Stephen A. Bustin; Ian Jacobs

BACKGROUND A proportion of patients with cancer and lymph nodes negative on histology will develop recurrence. Reverse-transcriptase PCR (RT-PCR) is a highly sensitive method for detection of lymph-node micrometastases, but accurate quantitative assessment has been difficult. METHODS We studied primary tumours and 156 lymph nodes from 32 patients with cervical cancer (stage IA2, IB1, and IB2) and 32 lymph nodes from nine patients with benign disease. A fully quantitative, real-time RT-PCR assay was used to document absolute copy numbers of the epithelial marker cytokeratin 19. Primers and probe were designed not to amplify either of the two cytokeratin 19 pseudogenes. FINDINGS All primary tumours and histologically involved lymph nodes (six) had more than 106 copies of cytokeratin 19 mRNA per microg total RNA. Expression of cytokeratin 19 (up to 1.1 x 10(5) copies per microg RNA) was detected in 66 (44%) of 150 histologically uninvolved lymph nodes, and in nodes from 16 of 32 patients with cervical cancer. 15 of these 16 patients with evidence of micrometastases had the highest cytokeratin 19 transcription level in a first lymph-node drainage station (three obturator, six internal, and six external iliac node). Transcription of cytokeratin 19 was found at a low level in just one of 32 lymph nodes obtained from nine patients with benign disease. Median copy number of cytokeratin 19 transcription was significantly higher (>10(3) copies) in association with adverse prognostic features. INTERPRETATION The results suggest that about 50% of early-stage cervical cancers shed tumour cells to the pelvic lymph nodes. The amount of cytokeratin 19 expression was related to clinicopathological features. Further studies are required to document the clinical implications of molecular micrometastases.


Nature Methods | 2013

The need for transparency and good practices in the qPCR literature

Stephen A. Bustin; Vladimir Benes; Jeremy A. Garson; Jan Hellemans; Jim F. Huggett; Mikael Kubista; Reinhold Mueller; Tania Nolan; Michael W. Pfaffl; Gregory L. Shipley; Carl T. Wittwer; Peter Schjerling; Philip J. R. Day; Mónica Abreu; Begoña Aguado; Jean-François Beaulieu; Anneleen Beckers; Sara Bogaert; John A. Browne; Fernando Carrasco-Ramiro; Liesbeth Ceelen; Kate L. Ciborowski; Pieter Cornillie; Stephanie Coulon; Ann Cuypers; Sara De Brouwer; Leentje De Ceuninck; Jurgen De Craene; Hélène De Naeyer; Ward De Spiegelaere

Two surveys of over 1,700 publications whose authors use quantitative real-time PCR (qPCR) reveal a lack of transparent and comprehensive reporting of essential technical information. Reporting standards are significantly improved in publications that cite the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, although such publications are still vastly outnumbered by those that do not.


Molecular Cancer | 2004

Colorectal cancers with microsatellite instability display mRNA expression signatures characteristic of increased immunogenicity

Ayan Banerjea; Shafi Ahmed; Rebecca Hands; Fei Huang; Xia Han; Peter Shaw; Roger Feakins; Stephen A. Bustin; Sina Dorudi

BackgroundColorectal cancers displaying high-degree microsatellite instability (MSI-H) have an improved prognosis compared to microsatellite stable (MSS) cancers. The observation of pronounced lymphocytic infiltrates suggests that MSI-H cancers are inherently more immunogenic. We aimed to compare the gene expression profiles of MSI-H and MSS cancers to provide evidence for an activated immune response in the former.ResultsWe analysed tissue from 133 colorectal cancer patients with full consent and Local Ethics Committee approval. Genomic DNA was analysed for microsatellite instability in BAT-26. High-quality RNA was used for microarray analysis on the Affymetrix® HG-U133A chip. Data was analysed on GeneSpring software version 6.0. Confirmatory real-time RT-PCR was performed on 28 MSI-H and 26 MSS cancers. A comparison of 29 MSI-H and 104 MSS cancers identified 2070 genes that were differentially expressed between the two groups [P < 0.005]. Significantly, many key immunomodulatory genes were up-regulated in MSI-H cancers. These included antigen chaperone molecules (HSP-70, HSP-110, Calreticulin, gp96), pro-inflammatory cytokines (Interleukin (IL)-18, IL-15, IL-8, IL-24, IL-7) and cytotoxic mediators (Granulysin, Granzyme A). Quantitative RT-PCR confirmed up-regulation of HSP-70 [P = 0.016], HSP-110 [P = 0.002], IL-18 [P = 0.004], IL-8 [0.002] and Granulysin [P < 0.0001].ConclusionsThe upregulation of a large number of genes implicated in immune response supports the theory that MSI-H cancers are immunogenic. The novel observation of Heat Shock Protein up-regulation in MSI-H cancer is highly significant in light of the recognised roles of these proteins in innate and antigen-specific immunogenicity. Increased mRNA levels of pro-inflammatory cytokines and cytotoxic mediators also indicate an activated anti-tumour immune response.

Collaboration


Dive into the Stephen A. Bustin's collaboration.

Top Co-Authors

Avatar

Sina Dorudi

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul J. Jenkins

St Bartholomew's Hospital

View shared research outputs
Top Co-Authors

Avatar

Gemma L. Johnson

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Ogunkolade

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Vladimir Benes

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Gregory L. Shipley

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Rebecca Hands

Queen Mary University of London

View shared research outputs
Researchain Logo
Decentralizing Knowledge