Stephen A. Ellwood
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen A. Ellwood.
international conference on embedded networked sensor systems | 2010
Vladimir Dyo; Stephen A. Ellwood; David W. Macdonald; Andrew Markham; Cecilia Mascolo; Bence Pásztor; Salvatore Scellato; Niki Trigoni; Ricklef Wohlers; Kharsim Yousef
As sensor network technologies become more mature, they are increasingly being applied to a wide variety of applications, ranging from agricultural sensing to cattle, oceanic and volcanic monitoring. Significant efforts have been made in deploying and testing sensor networks resulting in unprecedented sensing capabilities. A key challenge has become how to make these emerging wireless sensor networks more sustainable and easier to maintain over increasingly prolonged deployments. In this paper, we report the findings from a one year deployment of an automated wildlife monitoring system for analyzing the social co-location patterns of European badgers (Meles meles) residing in a dense woodland environment. We describe the stages of its evolution cycle, from implementation, deployment and testing, to various iterations of software optimization, followed by hardware enhancements, which in turn triggered the need for further software optimization. We report preliminary descriptive analyses of a subset of the data collected, demonstrating the significant potential our system has to generate new insights into badger behavior. The main lessons learned were: the need to factor in the maintenance costs while designing the system; to look carefully at software and hardware interactions; the importance of a rapid initial prototype deployment (this was key to our success); and the need for continuous interaction with domain scientists which allows for unexpected optimizations.
ACM Transactions on Sensor Networks | 2012
Vladimir Dyo; Stephen A. Ellwood; David W. Macdonald; Andrew Markham; Niki Trigoni; Ricklef Wohlers; Cecilia Mascolo; Bence Pásztor; Salvatore Scellato; Kharsim Yousef
The increasing adoption of wireless sensor network technology in a variety of applications, from agricultural to volcanic monitoring, has demonstrated their ability to gather data with unprecedented sensing capabilities and deliver it to a remote user. However, a key issue remains how to maintain these sensor network deployments over increasingly prolonged deployments. In this article, we present the challenges that were faced in maintaining continual operation of an automated wildlife monitoring system over a one-year period. This system analyzed the social colocation patterns of European badgers (Meles meles) residing in a dense woodland environment using a hybrid RFID-WSN approach. We describe the stages of the evolutionary development, from implementation, deployment, and testing, to various iterations of software optimization, followed by hardware enhancements, which in turn triggered the need for further software optimization. We highlight the main lessons learned: the need to factor in the maintenance costs while designing the system; to consider carefully software and hardware interactions; the importance of rapid prototyping for initial deployment (this was key to our success); and the need for continuous interaction with domain scientists which allows for unexpected optimizations.
international conference on embedded networked sensor systems | 2010
Andrew Markham; Niki Trigoni; Stephen A. Ellwood; David W. Macdonald
Currently, there is no existing method for automatically tracking the location of burrowing animals when they are underground, consequently zoologists only have a partial view of their subterranean behaviour and habits. Conventional RF based methods of localization are unsuitable because electromagnetic waves are severely attenuated by soil and moisture. Here, we use an as yet unexploited method of localization, namely magneto-inductive (MI) localization. Magnetic fields are not affected by soil or water, and thus have virtually unattenuated ground penetration. In this paper, we present a method that allows the position of an animal to be determined through soil. Not only does this enable the study of behaviour, it also allows the structure of the tunnel to be automatically mapped as the animal moves through it. We describe the application for tracking wild European Badgers (Meles meles) within their burrows, providing experimental data from a two month deployment.
Journal of Evolutionary Biology | 2013
Julia Schroeder; Hannah L. Dugdale; Reinder Radersma; Martin Hinsch; Deborah M. Buehler; J. Saul; L. Porter; András Liker; I. De Cauwer; Paul J. Johnson; Anna W. Santure; Ashleigh S. Griffin; L. Ross; Thomas J. Webb; Philine G. D. Feulner; Isabel Winney; M. Szulkin; Jan Komdeur; Maaike A. Versteegh; Charlotte K. Hemelrijk; Erik I. Svensson; Hannah A. Edwards; Maria Karlsson; Stuart A. West; Emma L. B. Barrett; David S. Richardson; Valentijn van den Brink; J. H. Wimpenny; Stephen A. Ellwood; Mark Rees
Lower visibility of female scientists, compared to male scientists, is a potential reason for the under‐representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under‐represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001–2011, 9–23% of invited speakers were women. This under‐representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high‐impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early‐mid career stage scientists, but was similar to senior scientists and authors that have published in high‐impact journals. High‐quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks.
IEEE Sensors Journal | 2012
Andrew Markham; Niki Trigoni; David W. Macdonald; Stephen A. Ellwood
Localization of mobile devices underground is extremely challenging, with radio propagation (such as used in GPS and VHF) severely attenuated by soil and moisture. However, low frequency magnetic fields are able to penetrate the ground with minimal loss. Mobile underground tracking devices record magnetic field strengths generated by an array of transmitting coils placed above the area of interest. This information is stored in flash memory, for opportunistic upload over a conventional radio link when the device is above ground. As a particular application of this technology, the underground movements of wild European badgers (Meles meles) were tracked in 3-D within their burrow systems, by equipping them with lightweight tracking collars. Typical localization accuracy is 0.45 m RMS over a 15 m × 15 m area and collar lifetime is of the order of 9 months from a 1.4 Ah lithium cell.
international conference on embedded wireless systems and networks | 2010
Bence Pásztor; Luca Mottola; Cecilia Mascolo; Gian Pietro Picco; Stephen A. Ellwood; David W. Macdonald
We target application domains where the behavior of animals or humans is monitored using wireless sensor network (WSN) devices. The code on these devices is updated frequently, as scientists acquire in-field data and refine their hypotheses. Wireless reprogramming is therefore fundamental to avoid the (expensive) re-collection of the devices. Moreover, the code carried by the monitored individuals often depends on their characteristics, e.g., the behavior or preferred habitat. We propose a selective reprogramming approach that simplifies and automates the process of delivering a code update to a target subset of nodes. Target selection is expressed through constraints injected in the WSN, triggering automatic dissemination of code updates whenever verified. Update dissemination relies on a novel protocol exploiting the social behavior of the monitored individuals. We evaluate our approach through simulation, using real-world animal and human traces. The results shows that our protocol is able to capture the social network structure in a way comparable to existing offline algorithms with global knowledge while allowing runtime adaptation to community structure changes, and that existing dissemination approaches based on gossip generate up to three times more network overhead than our socially-aware dissemination.
Journal of Zoology | 2004
David W. Macdonald; Christina D. Buesching; P. Stopka; Jonathan Henderson; Stephen A. Ellwood; S. E. Baker
Interspecific interactions between sympatric carnivores have important implications for intra-guild competition, epidemiology (here especially in the context of rabies and bovine tuberculosis), and strategies for species-specific population management. Data are provided on 135 interspecific encounters between at least 35 European badgers Meles meles and a minimum of five red foxes Vulpes vulpes , gathered with the aid of remote video surveillance at an artificial feeding site, and in the vicinity of six badger setts. We hypothesized that interspecific competition would be manifest in aggression and changes in vigilance and feeding, with the larger badger having the advantage, and we sought to explore differences in any such changes at the two types of site. Badgers were clearly dominant over foxes, fed in longer bouts and were less vigilant. At badger setts, once it was clear that the encounter was not going to escalate to aggression, each species was unaffected by the presence, proximity or orientation of the other. There are preliminary indications that foxes sometimes seek the company of badgers.
Animal Behaviour | 2010
Hannah L. Dugdale; Stephen A. Ellwood; David W. Macdonald
Cooperative-breeding studies tend to focus on a few alloparental behaviours in highly cooperative species exhibiting high reproductive skew and the associated short-term, but less frequently long-term, fitness costs. We analysed a suite of alloparental behaviours (assessed via filming) in a kin-structured, high-density population of plurally breeding European badgers, Meles meles, which are not highly cooperative. Group members, other than mothers, performed alloparental behaviour; however, this was not correlated with their relatedness to within-group young. Furthermore, mothers babysat, allogroomed cubs without reciprocation, and allomarked cubs more than other members of the group (controlling for observation time). For welfare reasons, we could not individually mark cubs; however, the number observed pre-independence never exceeded that trapped. All 24 trapped cubs, in three filmed groups, were assigned both parents using 22 microsatellites. Mothers may breed cooperatively, as the time they babysat their assigned, or a larger, litter size did not differ. Furthermore, two mothers probably allonursed, as they suckled more cubs than their assigned litter size. An 18-year genetic pedigree, however, detected no short-term (litter size; maternal survival to the following year) or long-term (offspring breeding probability; offspring lifetime breeding success) fitness benefits with more within-group mothers or other members of the group. Rather, the number of other members of the group (excluding mothers) correlated negatively with long-term fitness. Mothers may tolerate other members of the group, as nonbreeders undertook more digging. Our study highlights that alloparental care varies on a continuum from that seen in this high-density badger population, where alloparenting behaviour is minimal, through to species where alloparental care is common and provides fitness benefits
PLOS ONE | 2014
Michael J. Noonan; Andrew Markham; Chris Newman; Niki Trigoni; Christina D. Buesching; Stephen A. Ellwood; David W. Macdonald
We establish intra-individual and inter-annual variability in European badger (Meles meles) autumnal nightly activity in relation to fine-scale climatic variables, using tri-axial accelerometry. This contributes further to understanding of causality in the established interaction between weather conditions and population dynamics in this species. Modelling found that measures of daylight, rain/humidity, and soil temperature were the most supported predictors of ACTIVITY, in both years studied. In 2010, the drier year, the most supported model included the SOLAR*RH interaction, RAIN, and30cmTEMP (w = 0.557), while in 2012, a wetter year, the most supported model included the SOLAR*RH interaction, and the RAIN*10cmTEMP (w = 0.999). ACTIVITY also differed significantly between individuals. In the 2012 autumn study period, badgers with the longest per noctem activity subsequently exhibited higher Body Condition Indices (BCI) when recaptured. In contrast, under drier 2010 conditions, badgers in good BCI engaged in less per noctem activity, while badgers with poor BCI were the most active. When compared on the same calendar dates, to control for night length, duration of mean badger nightly activity was longer (9.5 hrs ±3.3 SE) in 2010 than in 2012 (8.3 hrs ±1.9 SE). In the wetter year, increasing nightly activity was associated with net-positive energetic gains (from BCI), likely due to better foraging conditions. In a drier year, with greater potential for net-negative energy returns, individual nutritional state proved crucial in modifying activity regimes; thus we emphasise how a ‘one size fits all’ approach should not be applied to ecological responses.
mobile data management | 2009
Ricklef Wohlers; Niki Trigoni; Rui Zhang; Stephen A. Ellwood
Collecting data from source sensor nodes to designated sinks is a common and challenging task in a wide spectrum of sensor network applications, ranging from animal monitoring to security surveillance. A number of approaches exploiting sink mobility have been proposed in recent years: some are proactive, in that sensor nodes push their readings to storage nodes from where they are collected by roaming mobile sinks, whereas others are reactive, in that mobile sinks pull readings from nearby sensor nodes as they traverse the sensor network. In this paper, we point out that deciding which data collection approach is more energy-efficient depends on application characteristics, including the mobility patterns of sinks and the desired freshness of collected data. We illustrate cases where combining proactive and reactive modes of data collection is particularly beneficial. This motivates the design of TwinRoute, a novel hybrid algorithm that can flexibly mix the two collection modes at appropriate levels depending on the application scenario. Our extensive experimental evaluation, using synthetic and real-world network topologies and sink traces, shows that TwinRoute outperforms the pure approaches, achieving desirable tradeoffs between energy expenditure and timely delivery of sensor data.