Stephen A. Jesch
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen A. Jesch.
Journal of Biological Chemistry | 2006
Maria L. Gaspar; Manuel Aregullin; Stephen A. Jesch; Susan A. Henry
The addition of inositol to actively growing yeast cultures causes a rapid increase in the rate of synthesis of phosphatidylinositol and, simultaneously, triggers changes in the expression of hundreds of genes. We now demonstrate that the addition of inositol to yeast cells growing in the presence of choline leads to a dramatic reprogramming of cellular lipid synthesis and turnover. The response to inositol includes a 5-6-fold increase in cellular phosphatidylinositol content within a period of 30 min. The increase in phosphatidylinositol content appears to be dependent upon fatty acid synthesis. Phosphatidylcholine turnover increased rapidly following inositol addition, a response that requires the participation of Nte1p, an endoplasmic reticulum-localized phospholipase B. Mass spectrometry revealed that the acyl species composition of phosphatidylinositol is relatively constant regardless of supplementation with inositol or choline, whereas phosphatidylcholine acyl species composition is influenced by both inositol and choline. In medium containing inositol, but lacking choline, high levels of dimyristoylphosphatidylcholine were detected. Within 60 min following the addition of inositol, dimyristoylphosphatidylcholine levels had decreased from ∼40% of total phosphatidylcholine to a basal level of less than 5%. nte1Δ cells grown in the absence of inositol and in the presence of choline exhibited lower levels of dimyristoylphosphatidylcholine than wild type cells grown under these same conditions, but these levels remained largely constant after the addition of inositol. These results are discussed in relationship to transcriptional regulation known to be linked to lipid metabolism in yeast.
Journal of Biological Chemistry | 2008
Maria L. Gaspar; Stephen A. Jesch; Raghuvir Viswanatha; Amy L. Antosh; William J. Brown; Sepp D. Kohlwein; Susan A. Henry
Seeking to better understand how membrane trafficking is coordinated with phospholipid synthesis in yeast, we investigated lipid synthesis in several Sec- temperature-sensitive mutants, including sec13-1. Upon shift of sec13-1 cells to the restrictive temperature of 37 °C, phospholipid synthesis decreased dramatically relative to the wild type control, whereas synthesis of neutral lipids, especially triacylglycerol (TAG), increased. When examined by fluorescence microscopy, the number of lipid droplets appeared to increase and formed aggregates in sec13-1 cells shifted to 37 °C. Electron microscopy confirmed the increase in lipid droplet number and revealed that many were associated with the vacuole. Analysis of lipid metabolism in strains lacking TAG synthase genes demonstrated that the activities of the products of these genes contribute to accumulation of TAG in sec13-1 cells after the shift to 37 °C. Furthermore, the permissive temperature for growth of the sec13-1 strain lacking TAG synthase genes was 3 °C lower than sec13-1 on several different growth media, indicating that the synthesis of TAG has physiological significance under conditions of secretory stress. Together these results suggest that following a block in membrane trafficking, yeast cells channel lipid metabolism from phospholipid synthesis into synthesis of TAG and other neutral lipids to form lipid droplets. We conclude that this metabolic switch provides a degree of protection to cells during secretory stress.
Molecular Genetics and Genomics | 2011
Manuel J. Villa-García; Myung Sun Choi; Flora Irma Hinz; Maria L. Gaspar; Stephen A. Jesch; Susan A. Henry
Inositol auxotrophy (Ino− phenotype) in budding yeast has classically been associated with misregulation of INO1 and other genes involved in lipid metabolism. To identify all non-essential yeast genes that are necessary for growth in the absence of inositol, we carried out a genome-wide phenotypic screening for deletion mutants exhibiting Ino− phenotypes under one or more growth conditions. We report the identification of 419 genes, including 385 genes not previously reported, which exhibit this phenotype when deleted. The identified genes are involved in a wide range of cellular processes, but are particularly enriched in those affecting transcription, protein modification, membrane trafficking, diverse stress responses, and lipid metabolism. Among the Ino− mutants involved in stress response, many exhibited phenotypes that are strengthened at elevated temperature and/or when choline is present in the medium. The role of inositol in regulation of lipid metabolism and stress response signaling is discussed.
Journal of Biological Chemistry | 2006
Stephen A. Jesch; Peng Liu; Xin Zhao; Martin T. Wells; Susan A. Henry
In many organisms the coordinated synthesis of membrane lipids is controlled by feedback systems that regulate the transcription of target genes. However, a complete description of the transcriptional changes that accompany the remodeling of membrane phospholipids has not been reported. To identify metabolic signaling networks that coordinate phospholipid metabolism with gene expression, we profiled the sequential and temporal changes in genome-wide expression that accompany alterations in phospholipid metabolism induced by inositol supplementation in yeast. This analysis identified six distinct expression responses, which included phospholipid biosynthetic genes regulated by Opi1p, endoplasmic reticulum (ER) luminal protein folding chaperone and oxidoreductase genes regulated by the unfolded protein response pathway, lipid-remodeling genes regulated by Mga2p, as well as genes involved in ribosome biogenesis, cytosolic stress response, and purine and amino acid metabolism. We also report that the unfolded protein response pathway is rapidly inactivated by inositol supplementation and demonstrate that the response of the unfolded protein response pathway to inositol is separable from the response mediated by Opi1p. These data indicate that altering phospholipid metabolism produces signals that are relayed through numerous distinct ER-to-nucleus signaling pathways and, thereby, produce an integrated transcriptional response. We propose that these signals are generated in the ER by increased flux through the pathway of phosphatidylinositol synthesis.
Journal of Biological Chemistry | 2010
Stephen A. Jesch; Maria L. Gaspar; Christopher J. Stefan; Manuel Aregullin; Susan A. Henry
The protein kinase C (PKC)-MAPK signaling cascade is activated and is essential for viability when cells are starved for the phospholipid precursor inositol. In this study, we report that inhibiting inositol-containing sphingolipid metabolism, either by inositol starvation or treatment with agents that block sphingolipid synthesis, triggers PKC signaling independent of sphingoid base accumulation. Under these same growth conditions, a fluorescent biosensor that detects the necessary PKC signaling intermediate, phosphatidylinositol (PI)-4-phosphate (PI4P), is enriched on the plasma membrane. The appearance of the PI4P biosensor on the plasma membrane correlates with PKC activation and requires the PI 4-kinase Stt4p. Like other mutations in the PKC-MAPK pathway, mutants defective in Stt4p and the PI4P 5-kinase Mss4p, which generates phosphatidylinositol 4,5-bisphosphate, exhibit inositol auxotrophy, yet fully derepress INO1, encoding inositol-3-phosphate synthase. These observations suggest that inositol-containing sphingolipid metabolism controls PKC signaling by regulating access of the signaling lipids PI4P and phosphatidylinositol 4,5-bisphosphate to effector proteins on the plasma membrane.
Journal of Biological Chemistry | 2008
Lilia R. Nunez; Stephen A. Jesch; Maria L. Gaspar; Claudia Almaguer; Manuel J. Villa-García; Monica Ruiz-Noriega; Jana Patton-Vogt; Susan A. Henry
The highly conserved yeast cell wall integrity mitogen-activated protein kinase pathway regulates cellular responses to cell wall and membrane stress. We report that this pathway is activated and essential for viability under growth conditions that alter both the abundance and pattern of synthesis and turnover of membrane phospholipids, particularly phosphatidylinositol and phosphatidylcholine. Mutants defective in this pathway exhibit a choline-sensitive inositol auxotrophy, yet fully derepress INO1 and other Opi1p-regulated genes when grown in the absence of inositol. Under these growth conditions, Mpk1p is transiently activated by phosphorylation and stimulates the transcription of known targets of Mpk1p signaling, including genes regulated by the Rlm1p transcription factor. mpk1Δ cells also exhibit severe defects in lipid metabolism, including an abnormal accumulation of phosphatidylcholine, diacylglycerol, triacylglycerol, and free sterols, as well as aberrant turnover of phosphatidylcholine. Overexpression of the NTE1 phospholipase B gene suppresses the choline-sensitive inositol auxotrophy of mpk1Δ cells, whereas overexpression of other phospholipase genes has no effect on this phenotype. These results indicate that an intact cell wall integrity pathway is required for maintaining proper lipid homeostasis in yeast, especially when cells are grown in the absence of inositol.
eLife | 2015
David Barneda; Joan Planas-Iglesias; Maria L. Gaspar; Dariush Mohammadyani; Sunil Prasannan; Dirk Dormann; Gil-Soo Han; Stephen A. Jesch; George M. Carman; Valerian E. Kagan; Malcolm G. Parker; Nicholas T. Ktistakis; Judith Klein-Seetharaman; Ann M. Dixon; Susan A. Henry; Mark Christian
Maintenance of energy homeostasis depends on the highly regulated storage and release of triacylglycerol primarily in adipose tissue, and excessive storage is a feature of common metabolic disorders. CIDEA is a lipid droplet (LD)-protein enriched in brown adipocytes promoting the enlargement of LDs, which are dynamic, ubiquitous organelles specialized for storing neutral lipids. We demonstrate an essential role in this process for an amphipathic helix in CIDEA, which facilitates embedding in the LD phospholipid monolayer and binds phosphatidic acid (PA). LD pairs are docked by CIDEA trans-complexes through contributions of the N-terminal domain and a C-terminal dimerization region. These complexes, enriched at the LD–LD contact site, interact with the cone-shaped phospholipid PA and likely increase phospholipid barrier permeability, promoting LD fusion by transference of lipids. This physiological process is essential in adipocyte differentiation as well as serving to facilitate the tight coupling of lipolysis and lipogenesis in activated brown fat. DOI: http://dx.doi.org/10.7554/eLife.07485.001
Chemistry and Physics of Lipids | 2014
Susan A. Henry; Maria L. Gaspar; Stephen A. Jesch
This article focuses on discoveries of the mechanisms governing the regulation of glycerolipid metabolism and stress response signaling in response to the phospholipid precursor, inositol. The regulation of glycerolipid lipid metabolism in yeast in response to inositol is highly complex, but increasingly well understood, and the roles of individual lipids in stress response are also increasingly well characterized. Discoveries that have emerged over several decades of genetic, molecular and biochemical analyses of metabolic, regulatory and signaling responses of yeast cells, both mutant and wild type, to the availability of the phospholipid precursor, inositol are discussed.
Journal of Biological Chemistry | 2009
J. Pedro Fernández-Murray; Gerard J. Gaspard; Stephen A. Jesch; Christopher R. McMaster
The Saccharomyces cerevisiae NTE1 gene encodes an evolutionarily conserved phospholipase B localized to the endoplasmic reticulum (ER) that degrades phosphatidylcholine (PC) generating glycerophosphocholine and free fatty acids. We show here that the activity of NTE1-encoded phospholipase B (Nte1p) prevents the attenuation of transcription of genes encoding enzymes involved in phospholipid synthesis in response to increased rates of PC synthesis by affecting the nuclear localization of the transcriptional repressor Opi1p. Nte1p activity becomes necessary for cells growing in inositol-free media under conditions of high rates of PC synthesis elicited by the presence of choline at 37 °C. The specific choline transporter encoded by the HNM1 gene is necessary for the burst of PC synthesis observed at 37 °C as follows: (i) Nte1p is dispensable in an hnm1Δ strain under these conditions, and (ii) there is a 3-fold increase in the rate of choline transport via the Hnm1p choline transporter upon a shift to 37 °C. Overexpression of NTE1 alleviated the inositol auxotrophy of a plethora of mutants, including scs2Δ, scs3Δ, ire1Δ, and hac1Δ among others. Overexpression of NTE1 sustained phospholipid synthesis gene transcription under conditions that normally repress transcription. This effect was also observed in a strain defective in the activation of free fatty acids for phosphatidic acid synthesis. No changes in the levels of phosphatidic acid were detected under conditions of altered expression of NTE1. Consistent with a synthetic impairment between challenged ER function and inositol deprivation, increased expression of NTE1 improved the growth of cells exposed to tunicamycin in the absence of inositol. We describe a new role for Nte1p toward membrane homeostasis regulating phospholipid synthesis gene transcription. We propose that Nte1p activity, by controlling PC abundance at the ER, affects lateral membrane packing and that this parameter, in turn, impacts the repressing transcriptional activity of Opi1p, the main regulator of phospholipid synthesis gene transcription.
Journal of Biological Chemistry | 2013
Sojin Lee; Maria L. Gaspar; Manuel Aregullin; Stephen A. Jesch; Susan A. Henry
Background: Inhibition of complex sphingolipid synthesis by inositol starvation activates the PKC-MAPK signaling pathway. Results: Sir2p-dependent telomeric silencing is activated by interrupting sphingolipid synthesis and requires the MAPK, Slt2p. Conclusion: Telomeric silencing is regulated by PKC-MAPK signaling in response to interruption of sphingolipid synthesis. Significance: Sphingolipid metabolism plays an important role in regulating silencing and chronological life span. Depriving wild type yeast of inositol, a soluble precursor for phospholipid, phosphoinositide, and complex sphingolipid synthesis, activates the protein kinase C (PKC)-MAPK signaling pathway, which plays a key role in the activation of NAD+-dependent telomeric silencing. We now report that triggering PKC-MAPK signaling by inositol deprivation or by blocking inositol-containing sphingolipid synthesis with aureobasidin A results in increased telomeric silencing regulated by the MAPK, Slt2p, and the NAD+-dependent deacetylase, Sir2p. Consistent with the dependence on NAD+ in Sir2p-regulated silencing, we found that inositol depletion induces the expression of BNA2, which is required for the de novo synthesis of NAD+. Moreover, telomeric silencing is greatly reduced in bna2Δ and npt1Δ mutants, which are defective in de novo and salvage pathways for NAD+ synthesis, respectively. Surprisingly, however, omitting nicotinic acid from the growth medium, which reduces cellular NAD+ levels, leads to increased telomeric silencing in the absence of inositol and/or at high temperature. This increase in telomeric silencing in response to inositol starvation is correlated to chronological life span extension but is Sir2p-independent. We conclude that activation of the PKC-MAPK signaling by interruption of inositol sphingolipid synthesis leads to increased Sir2p-dependent silencing and is dependent upon the de novo and salvage pathways for NAD+ synthesis but is not correlated with cellular NAD+ levels.