Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen A. K. Harvey is active.

Publication


Featured researches published by Stephen A. K. Harvey.


Journal of Virology | 2005

Gamma Interferon Can Block Herpes Simplex Virus Type 1 Reactivation from Latency, Even in the Presence of Late Gene Expression

Vilma Decman; Paul R. Kinchington; Stephen A. K. Harvey; Robert L. Hendricks

ABSTRACT Herpes simplex virus type 1 (HSV-1)-specific CD8+ T cells and the cytokine gamma interferon (IFN-γ) are persistently present in trigeminal ganglia (TG) harboring latent HSV-1. We define “latency” as the retention of functional viral genomes in sensory neurons without the production of infectious virions and “reactivation” as a multistep process leading from latency to virion assembly. CD8+ T cells can block HSV-1 reactivation in ex vivo mouse TG cultures and appear to be the sole source of IFN-γ in these cultures. Here we demonstrate that IFN-γ alone can block HSV-1 reactivation in some latently infected neurons, and we identify points of intervention in the life cycle of the reactivating virus. Cell suspensions of TG that were latently infected with recombinant RE HSV-1 expressing enhanced green fluorescent protein from the promoter for infected cell protein 0 (ICP0) or glycoprotein C (gC) were depleted of endogenous CD8+ or CD45+ cells and cultured in the presence or absence of IFN-γ. Our results demonstrate that IFN-γ acts on latently infected neurons to inhibit (i) HSV-1 reactivation, (ii) ICP0 promoter activity, (iii) gC promoter activity, and (iv) reactivation in neurons in which the ICP0 or gC promoter is active. Interestingly, we detected transcripts for ICP0, ICP4, and gH in neurons that expressed the ICP0 promoter but were prevented by IFN-γ from reactivation and virion formation. Thus, the IFN-γ blockade of HSV-1 reactivation from latency in neurons is associated with an inhibition of the expression of the ICP0 gene (required for reactivation) and a blockade of a step that occurs after the expression of at least some viral structural genes.


The Journal of Neuroscience | 2004

Role of Hippocampal CA3 μ-Opioid Receptors in Spatial Learning and Memory

William J. Meilandt; Edwin J. Barea-Rodriguez; Stephen A. K. Harvey; Joe L. Martinez

The dorsal CA3 region of the hippocampus is unique in its connectivity, sensitivity to neurotoxic lesions, and its ability to encode and retrieve episodic memories. Computational models of the CA3 region predict that blocking mossy-fiber and/or perforant path activity to CA3 would cause impairments in learning and recall of spatial memory, respectively. Because the CA3 region contains μ-opioid receptors and receives inputs from the mossy-fiber and lateral perforant pathways, both of which contain and release opioid peptides, we tested the hypothesis that inactivating μ-opioid receptors in the CA3 region would cause spatial learning and memory impairments and retrieval deficits. In this study, male Sprague Dawley rats were trained in a Morris water maze after a single bilateral intrahippocampal injection of either saline or the selective and irreversible μ-opioid receptor antagonist β-funaltrexamine (β-FNA) into area CA3. We found that μ-opioid receptor binding decreased 24 hr after β-FNA injection and returned to control levels 11 d after injection. Injections of β-FNA into the CA3 region, but not into the ventricles, caused a significant impairment in the acquisition of spatial learning without causing sensory or motor deficits. New learning was not affected once μ-opioid receptor levels replenished (>11 d after injection). In pretrained animals, β-FNA significantly impaired spatial memory retrieval and new (reversal) learning. These data are consistent with theoretical models of CA3 function and suggest that CA3 μ-opioid receptors play an important role in the acquisition and retrieval of spatial memory.


Journal of Hepatology | 2008

Augmenter of liver regeneration: An important intracellular survival factor for hepatocytes

Chinnasamy Thirunavukkarasu; Lian Fu Wang; Stephen A. K. Harvey; Simon C. Watkins; J. Richard Chaillet; John Prelich; Thomas E. Starzl; Chandrashekhar R. Gandhi

BACKGROUND/AIMS Augmenter of liver regeneration (ALR), a protein synthesized and stored in hepatocytes, is associated with mitochondria, and possesses sulfhydryl oxidase and cytochrome c reductase activities. We sought to determine the effects of ALR depletion in hepatocytes by antisense oligonucleotide transfection. METHODS Rat hepatocytes in primary culture were transfected with antisense oligonucleotide for ALR mRNA (ALR-AS) or scrambled oligonucleotide. Various analyses were performed at times up to 24h after transfection. RESULTS Treatment with ALR-AS caused a decrease in ALR mRNA, cellular depletion of ALR protein primarily from mitochondria, and decreased viability. Flow cytometric analysis of ALR-AS-transfected hepatocytes stained with annexin-Vcy3 and 7-aminoactinomycin D revealed apoptosis as the predominant cause of death up to 6h; incubation beyond this time resulted in necrosis in addition to apoptosis. ALR-AS-transfection caused release of mitochondrial cytochrome c, activation of caspase-3, profound reduction in the ATP content, and cellular release of LDH. Inhibition of caspase-3 inhibited the early phase of ALR-AS-induced death but not the late phase that included ALR and LDH release. CONCLUSIONS These results suggest that ALR is critically important for the survival of hepatocytes by its association with mitochondria and regulation of ATP synthesis.


Diagnostic Molecular Pathology | 2007

Gene expression profiling of Epstein-Barr virus-positive and -negative monomorphic B-cell posttransplant lymphoproliferative disorders.

Fiona E. Craig; Lawrence R. Johnson; Stephen A. K. Harvey; Michael A. Nalesnik; Jianhua H. Luo; Soumyaroop Bhattacharya; Steven H. Swerdlow

Although most posttransplant lymphoproliferative disorders (PTLD) are related to Epstein-Barr virus (EBV) infection, approximately 20% lack detectable EBV (EBV−). It is uncertain whether the latter cases are truly distinct from EBV+ PTLD or possibly relate to another infectious agent. This study used gene expression profiling to further investigate the relationship between EBV+ and EBV− monomorphic B-cell PTLD, and to search for clues to their pathogenesis. Affymetrix HU133A GeneChips were used to compare 4 EBV+ and 4 EBV− cases of monomorphic B-cell PTLD. Hierarchical clustering successfully distinguished the EBV+ and EBV− groups. Relative to EBV− PTLD, 54 transcripts were over-expressed in EBV+ PTLD. The transcripts identified included IRF7 (a known regulator of EBV LMP1 expression), EBI2 (EBV-induced gene 2), and 3 that are interferon induced (MX1, IFITM1, and IFITM3). In addition, the EBV+ group contained 232 transcripts decreased relative to the EBV− group, including changes concordant with those previously reported after EBV infection of cultured B-cell lines. In summary, in a small group of monomorphic B-cell PTLD, EBV+ cases demonstrated a subset of gene expression changes associated with EBV infection of B cells. By contrast, EBV− PTLD lacked viral-associated changes suggesting that they are biologically distinct.


Gut | 2004

Increased hepatic platelet activating factor (PAF) and PAF receptors in carbon tetrachloride induced liver cirrhosis

Yongping Yang; Edwin M. Nemoto; Stephen A. K. Harvey; Vladimir Subbotin; Chandrashekhar R. Gandhi

Background and aims: The liver is a major site for the synthesis and actions of platelet activating factor (PAF), a potent hepatic vasoconstrictor and systemic vasodilator. As PAF is implicated in portal hypertension and hyperdynamic circulation associated with liver cirrhosis, we characterised changes in the hepatic PAF system in experimental cirrhosis. Methods: In rats made cirrhotic by carbon tetrachloride (CCl4) administration for eight weeks, we determined hepatic levels of PAF and its cognate receptor, and the effects of PAF and PAF antagonist (BN52021) on portal and arterial pressure. Results: Compared with control rats, cirrhotic rats had higher hepatic PAF levels, higher apparent hepatic efflux of PAF, and higher PAF levels in arterial blood (p<0.01, p<0.01, p<0.05, respectively). Relative to controls, cirrhotic livers had elevated hepatic PAF receptors (by mRNA and protein levels and [3H]PAF binding), higher (p<0.01) baseline hepatic portal pressure, and an augmented (p = 0.03) portal pressure response to PAF infusion (1 μg/kg). Portal infusion of BN52021 (5 mg/kg) showed that elevated endogenous PAF was responsible for 23% of the cirrhotic portal pressure increase but made no contribution to systemic hypotension. Finally, increased PAF receptor density was observed in the contractile perisinusoidal stellate cells isolated from cirrhotic livers relative to those from control livers. Conclusions: In cirrhosis, increased hepatic release of PAF elevates systemic PAF; in combination with upregulated hepatic PAF receptors in stellate cells, this contributes to portal hypertension.


Journal of Immunology | 2012

Early Responding Dendritic Cells Direct the Local NK Response To Control Herpes Simplex Virus 1 Infection within the Cornea

Gregory M. Frank; Kristine-Ann Buela; Dawn M. Maker; Stephen A. K. Harvey; Robert L. Hendricks

Dendritic cells (DCs) regulate both innate and adaptive immune responses. In this article, we exploit the unique avascularity of the cornea to examine a role for local or very early infiltrating DCs in regulating the migration of blood-derived innate immune cells toward HSV-1 lesions. A single systemic diphtheria toxin treatment 2 d before HSV-1 corneal infection transiently depleted CD11c+ DCs from both the cornea and lymphoid organs of CD11c-DTR bone marrow chimeric mice for up to 24 h postinfection. Transient DC depletion significantly delayed HSV-1 clearance from the cornea through 6 d postinfection. No further compromise of viral clearance was observed when DCs were continuously depleted throughout the first week of infection. DC depletion did not influence extravasation of NK cells, inflammatory monocytes, or neutrophils into the peripheral cornea, but it did significantly reduce migration of NK cells and inflammatory monocytes, but not neutrophils, toward the HSV-1 lesion in the central cornea. Depletion of NK cells resulted in similar loss of viral control to transient DC ablation. Our findings demonstrate that resident corneal DCs and/or those that infiltrate the cornea during the first 24 h after HSV-1 infection contribute to the migration of NK cells and inflammatory monocytes into the central cornea, and are consistent with a role for NK cells and possibly inflammatory monocytes, but not polymorphonuclear neutrophils, in clearing HSV-1 from the infected cornea.


Gastroenterology | 2015

Liver-Specific Deletion of Augmenter of Liver Regeneration Accelerates Development of Steatohepatitis and Hepatocellular Carcinoma in Mice

Chandrashekhar R. Gandhi; J. Richard Chaillet; Michael A. Nalesnik; Sudhir Kumar; Anil Dangi; A. Jake Demetris; Robert E. Ferrell; Tong Wu; Senad Divanovic; Traci Stankeiwicz; Benjamin Shaffer; Donna B. Stolz; Stephen A. K. Harvey; Jiang Wang; Thomas E. Starzl

BACKGROUND & AIMS Augmenter of liver regeneration (ALR, encoded by GFER) is a widely distributed pleiotropic protein originally identified as a hepatic growth factor. However, little is known about its roles in hepatic physiology and pathology. We created mice with liver-specific deletion of ALR to study its function. METHODS We developed mice with liver-specific deletion of ALR (ALR-L-KO) using the albumin-Cre/LoxP system. Liver tissues were collected from ALR-L-KO mice and ALR(floxed/floxed) mice (controls) and analyzed by histology, reverse-transcription polymerase chain reaction, immunohistochemistry, electron microscopy, and techniques to measure fibrosis and lipids. Liver tissues from patients with and without advanced liver disease were determined by immunoblot analysis. RESULTS Two weeks after birth, livers of ALR-L-KO mice contained low levels of ALR and adenosine triphosphate (ATP); they had reduced mitochondrial respiratory function and increased oxidative stress, compared with livers from control mice, and had excessive steatosis, and hepatocyte apoptosis. Levels of carbamyl-palmitoyl transferase 1a and ATP synthase subunit ATP5G1 were reduced in livers of ALR-L-KO mice, indicating defects in mitochondrial fatty acid transport and ATP synthesis. Electron microscopy showed mitochondrial swelling with abnormalities in shapes and numbers of cristae. From weeks 2-4 after birth, levels of steatosis and apoptosis decreased in ALR-L-KO mice, and numbers of ALR-expressing cells increased, along with ATP levels. However, at weeks 4-8 after birth, livers became inflamed, with hepatocellular necrosis, ductular proliferation, and fibrosis; hepatocellular carcinoma developed by 1 year after birth in nearly 60% of the mice. Hepatic levels of ALR were also low in ob/ob mice and alcohol-fed mice with liver steatosis, compared with controls. Levels of ALR were lower in liver tissues from patients with advanced alcoholic liver disease and nonalcoholic steatohepatitis than in control liver tissues. CONCLUSIONS We developed mice with liver-specific deletion of ALR, and showed that it is required for mitochondrial function and lipid homeostasis in the liver. ALR-L-KO mice provide a useful model for investigating the pathogenesis of steatohepatitis and its complications.


Journal of Hepatology | 2003

Kupffer cells are a major source of increased platelet activating factor in the CCl4-induced cirrhotic rat liver

Yongping Yang; Stephen A. K. Harvey; Chandrashekhar R. Gandhi

BACKGROUND/AIMS Endothelin-1 (ET-1) stimulates the synthesis of platelet-activating factor (PAF) by Kupffer cells in vitro. Hepatic concentrations of both ET-1 (a potent vasoconstrictor) and PAF (a mediator of hepatic vasoconstriction and the cirrhotic hyperdynamic state) increase in cirrhosis. The aim of this study was to determine if the responsiveness of Kupffer cells to produce PAF upon ET-1 challenge is modified by cirrhosis. METHODS Kupffer cells, isolated from the livers of control and CCl(4)-induced cirrhotic rats, were placed in serum-free medium after overnight culture. PAF and ET-1 receptors, ET-1-induced PAF synthesis, and PAF- and ET-1-induced prostaglandin E(2) (PGE(2)) synthesis were determined 24 h later. RESULTS Both basal and ET-1-stimulated PAF synthesis was increased in cirrhotic Kupffer cells as indicated by increased cell-associated and released PAF. Cirrhotic Kupffer cells also had elevated densities of functional receptors for both PAF and ET-1 (exclusively ET(B)), as measured by ligand binding, mRNA expression of the respective receptors, and ligand-stimulated PGE(2) synthesis. CONCLUSIONS Cirrhosis sensitizes Kupffer cells to both ET-1 and PAF by elevating their respective receptor levels. Since both mediators individually cause portal hypertension, an increase in ET-1-stimulated PAF synthesis in Kupffer cells will exacerbate the hepatic and extrahepatic complications of cirrhosis.


Journal of Immunology | 2008

Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

Thomas L. Cherpes; James L. Busch; Brian S. Sheridan; Stephen A. K. Harvey; Robert L. Hendricks

Clinical research suggests hormonal contraceptive use is associated with increased frequencies of HSV reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV type 1 (HSV-1) reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons.


Journal of Virology | 2014

Reversible Nerve Damage and Corneal Pathology in Murine Herpes Simplex Stromal Keratitis

Hongmin Yun; Alexander M. Rowe; Kira L. Lathrop; Stephen A. K. Harvey; Robert L. Hendricks

ABSTRACT Herpes simplex virus type 1 (HSV-1) shedding from sensory neurons can trigger recurrent bouts of herpes stromal keratitis (HSK), an inflammatory response that leads to progressive corneal scarring and blindness. A mouse model of HSK is often used to delineate immunopathogenic mechanisms and bears many of the characteristics of human disease, but it tends to be more chronic and severe than human HSK. Loss of blink reflex (BR) in human HSK is common and due to a dramatic retraction of corneal sensory nerve termini in the epithelium and the nerve plexus at the epithelial/stromal interface. However, the relationship between loss of BR due to nerve damage and corneal pathology associated with HSK remains largely unexplored. Here, we show a similar retraction of corneal nerves in mice with HSK. Indeed, we show that much of the HSK-associated corneal inflammation in mice is actually attributable to damage to the corneal nerves and accompanying loss of BR and can be prevented or ameliorated by tarsorrhaphy (suturing eyelids closed), a clinical procedure commonly used to prevent corneal exposure and desiccation. In addition, we show that HSK-associated nerve retraction, loss of BR, and severe pathology all are reversible and regulated by CD4+ T cells. Thus, defining immunopathogenic mechanisms of HSK in the mouse model will necessitate distinguishing mechanisms associated with the immunopathologic response to the virus from those associated with loss of corneal sensation. Based on our findings, investigation of a possible contribution of nerve damage and BR loss to human HSK also appears warranted. IMPORTANCE HSK in humans is a potentially blinding disease characterized by recurrent inflammation and progressive scarring triggered by viral release from corneal nerves. Corneal nerve damage is a known component of HSK, but the causes and consequences of HSK-associated nerve damage remain obscure. We show that desiccation of the corneal surface due to nerve damage and associated loss of BR severely exacerbates and prolongs inflammation-induced pathology in mice. Preventing corneal desiccation results in a milder and more transient HSK with variable scarring that mirrors HSK seen in most humans. We further show that nerve damage is reversible and regulated by CD4+ T cells. Thus, we provide a mouse model that more closely resembles typical human HSK and suggest nerve damage is an important but largely overlooked factor in human disease.

Collaboration


Dive into the Stephen A. K. Harvey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chandrashekhar R. Gandhi

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge