Stephen A. Rehner
Agricultural Research Service
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen A. Rehner.
Fungal Biology | 1994
Stephen A. Rehner; Gary J. Samuels
The phylogenetic distribution of Gliocladium within the Hypocreales was investigated by parsimony analysis of partial sequences from the nuclear large subunit ribosomal DNA (28S rDNA). Two principal monophyletic groups were resolved that included species with anamorphs classified in Gliocladium. The first clade includes elements of the genera Hypocrea (H. gelatinosa, H. lutea) plus Trichoderma, Hypocrea pallida, Hypomyces and Sphaerostilbella, which are each shown to be monophyletic but whose sister group relationships are unresolved with the present data set. Gliocladium anamorphs in this clade include Gliocladium penicillioides, the type species of Gliocladium and anamorph of Sphaerostilbella aureonitens, and Trichoderma virens (= G. virens) which is a member of the clade containing Hypocrea and Trichoderma. A second clade, consisting of species with pallid perithecia, is grouped around Nectria ochroleuca, whose anamorph is Gliocladium roseum. Other species in this clade having Gliocladium-like anamorphs are Nectriopsis sporangiicola and Roumegueriella rufula. The species of Nectria represented in this study are polyphyletic and resolved as four separate groups: (1) N. cinnabarina the type species, (2) three species with Fusarium anamorphs including N. albosuccinea, N. haematococca and Gibberella fujikoroi, (3) N. purtonii a species whose anamorph is classified in Fusarium sect. Eupionnotes, and (4) N. ochroleuca, which is representative of species with pallid perithecia. The results indicate that Gliocladium is polyphyletic and that G. penicillioides, G. roseum, and Trichoderma virens (= G. virens), are generically distinct.
Mycologia | 2009
Joseph F. Bischoff; Stephen A. Rehner; Richard A. Humber
Metarhizium anisopliae, the type species of the anamorph entomopathogenic genus Metarhizium, is currently composed of four varieties, including the type variety, and had been demonstrated to be closely related to M. taii, M. pingshaense and M. guizhouense. In this study we evaluate phylogenetic relationships within the M. anisopliae complex, identify monophyletic lineages and clarify the species taxonomy. To this end we have employed a multigene phylogenetic approach using near-complete sequences from nuclear encoded EF-1α, RPB1, RPB2 and β-tubulin gene regions and evaluated the morphology of these taxa, including ex-type isolates whenever possible. The phylogenetic and in some cases morphological evidence supports the monophyly of nine terminal taxa in the M. anisopliae complex that we recognize as species. We propose to recognize at species rank M. anisopliae, M. guizhouense, M. pingshaense, M. acridum stat. nov., M. lepidiotae stat. nov. and M. majus stat. nov. In addition we describe the new species M. globosum and M. robertsii, resurrect the name M. brunneum and show that M. taii is a later synonym of M. guizhouense.
Science | 1994
Ignacio H. Chapela; Stephen A. Rehner; Ted R. Schultz; Ulrich G. Mueller
The evolutionary history of the symbiosis between fungus-growing ants (Attini) and their fungi was elucidated by comparing phylogenies of both symbionts. The fungal phylogeny based on cladistic analyses of nuclear 28S ribosomal DNA indicates that, in contrast with the monophyly of the ants, the attine fungi are polyphyletic. Most cultivated fungi belong to the basidiomycete family Lepiotaceae; however, one ant genus, Apterostigma, has acquired a distantly related basidiomycete lineage. Phylogenetic patterns suggest that some primitive attines may have repeatedly acquired lepiotaceous symbionts. In contrast, the most derived attines have clonally propagated the same fungal lineage for at least 23 million years.
Proceedings of the Royal Society of London B: Biological Sciences | 2006
Hermógenes Fernández-Marín; Jess K. Zimmerman; Stephen A. Rehner; William T. Wcislo
Insect societies face constant challenges from disease agents. Ants deploy diverse antimicrobial compounds against pathogens and the key sources are metapleural glands (MGs). Are MG products passively secreted and used indiscriminately or are they selectively used when ants are challenged by pathogens? In 26 species from five subfamilies, ants use foreleg movements to precisely groom the MG opening. In the absence of experimental infection, MG grooming rates are low and workers groom themselves after contacting the MGs. The derived leaf-cutter ants (Atta and Acromyrmex) also groom their fungal gardens, substrata (leaves), queens and nest-mates after MG grooming. Atta respond to a challenge by fungal conidia by increasing the rate of MG grooming, but do not do so when an inert powder is applied. This increase occurs in the first hour after a potential infection, after which it returns to baseline levels. Ants with open MGs produce more infrabuccal pellets (IP) than ants with sealed MGs and conidia within pellets from the former are less likely to germinate. Thus, ants selectively groom their MGs when disease agents are present, suggesting that they also selectively use their MG secretions, which has important implications for understanding the evolution of hygienic behaviour in social groups.
Mycologia | 2010
Enith I. Rojas; Stephen A. Rehner; Gary J. Samuels; Sunshine A. Van Bael; Edward Allen Herre; Paul F. Cannon; Rui Chen; Junfeng Pang; Rui-Wu Wang; Ya-Ping Zhang; Yan-Qiong Peng; Tao Sha
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species’ ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá. ITS and 5′-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5′-tef1 screens concordantly resolved four strongly supported lineages, clades A–D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5′-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.
Mycologia | 2011
Stephen A. Rehner; Andrew M. Minnis; Gi-Ho Sung; J. Jennifer Luangsa-ard; Luis Devotto; Richard A. Humber
Beauveria is a cosmopolitan anamorphic genus of arthropod pathogens that includes the agronomically important species, B. bassiana and B. brongniartii, which are used as mycoinsecticides for the biological control of pest insects. Recent phylogenetic evidence demonstrates that Beauveria is monophyletic within the Cordycipitaceae (Hypocreales), and both B. bassiana and B. brongniartii have been linked developmentally and phylogenetically to Cordyceps species. Despite recent interest in the genetic diversity and molecular ecology of Beauveria, particularly as it relates to their role as pathogens of insects in natural and agricultural environments, the genus has not received critical taxonomic review for several decades. A multilocus phylogeny of Beauveria based on partial sequences of RPB1, RPB2, TEF and the nuclear intergenic region, Bloc, is presented and used to assess diversity within the genus and to evaluate species concepts and their taxonomic status. B. bassiana and B. brongniartii, both which represent species complexes and which heretofore have lacked type specimens, are redescribed and types are proposed. In addition six new species are described including B. varroae and B. kipukae, which form a biphyletic, morphologically cryptic sister lineage to B. bassiana, B. pseudobassiana, which also is morphologically similar to but phylogenetically distant from B. bassiana, B. asiatica and B. australis, which are sister lineages to B. brongniartii, and B. sungii, an Asian species that is linked to an undetermined species of Cordyceps. The combination B. amorpha is validly published and an epitype is designated.
Molecular Ecology | 2011
Romina Gazis; Stephen A. Rehner; Priscila Chaverri
The estimation of species diversity in fungal endophyte communities is based either on species counts or on the assignment of operational taxonomic units (OTUs). Consequently, the application of different species recognition criteria affects not only diversity estimates but also the ecological hypotheses that arise from those observations. The main objective of the study was to examine how the choice and number of genetic markers and species delimitation criteria influence biodiversity estimates. Here, we compare approaches to defining species boundaries in three dominant species complexes of tropical endophytes, specially Colletotrichum gloeosporioides agg., Pestalotiopsis microspora agg. and Trichoderma harzianum agg., from two Amazonian trees: Hevea brasiliensis and H. guianensis. Molecular tools were used to describe and compare the diversity of the different assemblages. Multilocus phylogenetic analyses [gpd, internal transcribed spacer (ITS) and tef1] and modern techniques for phylogenetic species delimitation were overlaid with ecological data to recognize putative species or OTUs. The results demonstrate that ITS alone generally underestimates the number of species predicted by other nuclear loci. These results question the use of ITS and arbitrary divergence thresholds for species delimitation.
Molecular Ecology | 2005
Matthew H. Greenstone; Daniel L. Rowley; U. Heimbach; J. G. Lundgren; R. S. Pfannenstiel; Stephen A. Rehner
Identification of arthropod predators is challenging when closely related species are found at a given locality. Identification of the immature stages is especially problematic, because distinguishing morphological features are difficult to use or have not been described. We used polymerase chain reaction (PCR) to distinguish closely related carabids and spiders, and to match eggs and larvae (or nymphs) with identified adult parents. Within the Carabidae, we amplified species‐specific mitochondrial cytochrome oxidase I (COI) fragments for three species each in the genera Poecilus and Harpalus, and two each in Chlaenius and Bembidion. Within the Araneae, we amplified species‐specific COI fragments for two Hibana species (Anyphaenidae), Pardosa milvina and Rabidosa rabida (Lycosidae), Frontinella communis and Grammonota texana (Linyphiidae), and Cheiracanthium inclusum (Miturgidae). We are able to correctly identify all immature stages tested — eggs, larvae (or nymphs) and pupae — by comparison of the amplified fragments with those of the adults. Using COI markers as species identifiers is a tenet of the Barcode of Life initiative, an international consortium to provide a molecular identifier for every animal species.
Phytopathology | 2013
David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau
In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.
Phytopathology | 2013
David M. Geiser; Takayuki Aoki; Charles W. Bacon; Scott E. Baker; Madan K. Bhattacharyya; Mary E. Brandt; Daren W. Brown; L. W. Burgess; S. Chulze; Jeffrey J. Coleman; J. C. Correll; Sarah F. Covert; Pedro W. Crous; Christina A. Cuomo; G. Sybren de Hoog; Antonio Di Pietro; Wade H. Elmer; Lynn Epstein; Rasmus John Normand Frandsen; Stanley Freeman; Tatiana Gagkaeva; Anthony E. Glenn; Thomas R. Gordon; Nancy F. Gregory; Kim E. Hammond-Kosack; Linda E. Hanson; María del Mar Jiménez-Gasco; Seogchan Kang; H. Corby Kistler; Gretchen A. Kuldau
In this letter, we advocate recognizing the genus Fusarium as the sole name for a group that includes virtually all Fusarium species of importance in plant pathology, mycotoxicology, medicine, and basic research. This phylogenetically guided circumscription will free scientists from any obligation to use other genus names, including teleomorphs, for species nested within this clade, and preserve the application of the name Fusarium in the way it has been used for almost a century. Due to recent changes in the International Code of Nomenclature for algae, fungi, and plants, this is an urgent matter that requires community attention. The alternative is to break the longstanding concept of Fusarium into nine or more genera, and remove important taxa such as those in the F. solani species complex from the genus, a move we believe is unnecessary. Here we present taxonomic and nomenclatural proposals that will preserve established research connections and facilitate communication within and between research communities, and at the same time support strong scientific principles and good taxonomic practice.