Stephen A. Wickham
University of Salzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen A. Wickham.
Ecology | 2002
Helmut Hillebrand; Maria Kahlert; Ann-Louise Haglund; Ulrike-G. Berninger; Simone Nagel; Stephen A. Wickham
In periphyton communities, autotrophic algae and prokaryotes live in close spatial proximity to heterotrophic components such as bacteria and micro- and meiofauna. In factorial field experiments, we manipulated grazer access and nutrient supply to periphyton communities and measured the effects on algal, ciliate, meiofaunal, and bacterial biomass. We tested whether grazing macrozoobenthos affects all periphytic components (generalist consumption), whether nutrient effects propagate through the community, and whether interactions between the different periphyton groups allow for indirect feedback mechanisms. The experiments were conducted during three different seasons in a meso-eutrophic lake in Sweden (Lake Erken) and at an adjacent coastal marine site (Vaddo) of similar productivity, but with contrasting grazer fauna. We found strong direct effects of nutrients and grazing on algae at both sites. Algal biomass increased in fertilized treatments and was significantly reduced when grazers were present. The algae clearly dominated the system quantitatively and were positively correlated to the biomass of ciliates and meiofauna. The effects of grazing and nutrients were more complex for heterotrophs than for algae. Generally, the presence of grazers tended to increase the biomass of bacteria, ciliates, and meiofauna. Thus, macrograzers were not generalist consumers of the entire community, but mainly reduced algae. Furthermore, the results suggested strong indirect effects of grazing, presumably through changes in nutrient supply and algal size structure. Nutrient enrichment had weak and inconsistent effects on bacterial, ciliate, and meiofaunal biomass. There was thus no complete propagation of bottom-up effects through the community, and strong internal feedback mechanisms within the periphyton mediated the effects of macroconsumers and nutrient enrichment.
European Journal of Protistology | 2009
Yanli Lei; Kuidong Xu; Joong Ki Choi; Hyun Pyo Hong; Stephen A. Wickham
The ciliate community structure and seasonal dynamics in a solar saltern of the Yellow Sea were studied based on 4 sampling dates and 8 stations with salinities from 27.7 per thousand to 311.0 per thousand. The effects of the type and concentration of the fixative used (Lugols and Bouins) were tested at the first sampling date. Fixative type and fixative concentration had significant effects on ciliate abundance and biovolume, with 1% Lugols giving the best results. A detailed investigation using live observations and protargol staining techniques revealed a total of 98 morphospecies from 8 sampling stations. There was obvious seasonal variation in species composition at most of the stations, but this tended to be less distinct with increasing salinity, as the dominant ciliate group shifted from oligotrichs to heterotrichs. Ciliate abundance varied from 4.40 x 10(1) to 2.11 x 10(5) cellsl(-1) and biomass ranged between 2.39 and 9.87 x 10(3)microg Cl(-1) (at a salinity of 147.6 per thousand). Both abundance and biomass decreased abruptly when salinity exceeded 100-150 per thousand. Statistical analyses suggested that the dynamics of ciliate abundance and biomass were regulated by both salinity and by season, but those of diversity and species richness were mainly controlled by salinity and both significantly decreased with increasing salinity.
Oecologia | 2012
Romana Limberger; Stephen A. Wickham
The spatial scale of disturbance is a factor potentially influencing the relationship between disturbance and diversity. There has been discussion on whether disturbances that affect local communities and create a mosaic of patches in different successional stages have the same effect on diversity as regional disturbances that affect the whole landscape. In a microcosm experiment with metacommunities of aquatic protists, we compared the effect of local and regional disturbances on the disturbance–diversity relationship. Local disturbances destroyed entire local communities of the metacommunity and required reimmigration from neighboring communities, while regional disturbances affected the whole metacommunity but left part of each local community intact. Both disturbance types led to a negative relationship between disturbance intensity and Shannon diversity. With strong local disturbance, this decrease in diversity was due to species loss, while strong regional disturbance had no effect on species richness but reduced the evenness of the community. Growth rate appeared to be the most important trait for survival after strong local disturbance and dominance after strong regional disturbance. The pattern of the disturbance–diversity relationship was similar for both local and regional diversity. Although local disturbances at least temporally increased beta diversity by creating a mosaic of differently disturbed patches, this high dissimilarity did not result in regional diversity being increased relative to local diversity. The disturbance–diversity relationship was negative for both scales of diversity. The flat competitive hierarchy and absence of a trade-off between competition and colonization ability are a likely explanation for this pattern.
Oecologia | 2011
Romana Limberger; Stephen A. Wickham
There is considerable theoretical evidence that a trade-off between competitive and colonization ability enables species coexistence. However, empirical studies testing for the presence of a competition–colonization (CC) trade-off and its importance for species coexistence have found mixed results. In a microcosm experiment, we looked for a CC trade-off in a community of six benthic ciliate species. For each species, we measured the time needed to actively disperse to and colonize an empty microcosm. By measuring dispersal rates and growth rates of the species, we were able to differentiate between these two important components of colonization ability. Competitive ability was investigated by comparing species’ growth with or without a competitor in all pairwise species combinations. Species significantly differed in their colonization abilities, with good colonizers having either high growth rates or high dispersal rates or both. Although species showed a clear competitive hierarchy, competitive and colonization ability were uncorrelated. The weakest competitors were also the weakest colonizers, and the strongest competitor was an intermediate colonizer. However, some of the inferior competitors had higher colonization abilities than the strongest competitor, indicating that a CC trade-off may enable coexistence for a subset of the species. Absence of a community-wide CC trade-off may be based on the lack of strong relationships between the traits underlying competitive and colonization ability. We show that temporal effects and differential resource use are alternative mechanisms of coexistence for the species that were both slow colonizers and poor competitors.
Journal of Eukaryotic Microbiology | 2014
Yanli Lei; Karen Stumm; Stephen A. Wickham; Ulrike-G. Berninger
The quantitative importance of ciliates, foraminifers, and amoebae was investigated in marine, brackish, and freshwater sediments from 15 littoral stations. Total protozoan communities were usually dominated by ciliates in term of abundance, while amoebae often dominated in terms of biomass. Applying the biomass‐metabolic rate equation, ciliates, amoebae, and foraminifera were estimated to contribute 66% of the total abundance and 33% of the biomass, but up to 55% of the combined metabolic rate to the micro‐ and meiobenthos in the 15 sediments. Statistical analyses using ciliate data demonstrated: (1) species composition and community structures represented significant differences between freshwater and marine/brackish sediments, and subsequently between temperate and arctic sampling sites; (2) the occurrence of dominant ciliates and their allocation to feeding types indicated that herbivory was the most common feeding strategy in these sediments; (3) multivariate analyses showed all of the tested environmental factors (temperature, salinity, silt/clay, carbon, nitrogen, and chlorophyll a) to be important to varying degrees, but especially the combination of salinity, temperature, and silt/clay. Multiple factor effects or comprehensive influences might be important in regulating the distribution of protozoa in sediments. The importance of protozoa in sediment systems and the potential ecological significance of cysts are discussed.
Archiv Fur Hydrobiologie | 2002
Anja Scherwass; Stephen A. Wickham; Hartmut Arndt
The enumeration of ciliates from riverine samples is often confounded by the problems of relatively low ciliate abundances combined with high turbidity. We successfully tested a method to determine abundance and taxonomic composition of planktonic ciliates in highly turbid running waters. The concentration of samples by sedimentation in Utermohl-chambers was combined with density gradient centrifugation (to exclude inorganic particles) and quantitative protargol staining (for taxonomic determination of species). The newly developed technique was compared with established methods (live counting, counting in Utermohl chambers and quantitative protargol staining without prior exclusion of inorganic particles). We could demonstrate that the newly developed technique gave, in addition to the quantification of ciliates, a detailed overview of taxonomic composition in the investigated samples.
PLOS ONE | 2011
Romana Limberger; Stephen A. Wickham
Linking local communities to a metacommunity can positively affect diversity by enabling immigration of dispersal-limited species and maintenance of sink populations. However, connectivity can also negatively affect diversity by allowing the spread of strong competitors or predators. In a microcosm experiment with five ciliate species as prey and a copepod as an efficient generalist predator, we analysed the effect of connectivity on prey species richness in metacommunities that were either unconnected, connected for the prey, or connected for both prey and predator. Presence and absence of predator dispersal was cross-classified with low and high connectivity. The effect of connectivity on local and regional richness strongly depended on whether corridors were open for the predator. Local richness was initially positively affected by connectivity through rescue of species from stochastic extinctions. With predator dispersal, however, this positive effect soon turned negative as the predator spread over the metacommunity. Regional richness was unaffected by connectivity when local communities were connected only for the prey, while predator dispersal resulted in a pronounced decrease of regional richness. The level of connectivity influenced the speed of richness decline, with regional species extinctions being delayed for one week in weakly connected metacommunities. While connectivity enabled rescue of prey species from stochastic extinctions, deterministic extinctions due to predation were not overcome through reimmigration from predator-free refuges. Prey reimmigrating into these sink habitats appeared to be directly converted into increased predator abundance. Connectivity thus had a positive effect on the predator, even when the predator was not dispersing itself. Our study illustrates that dispersal of a species with strong negative effects on other community members shapes the dispersal-diversity relationship. When connections enable the spread of a generalist predator, positive effects of connectivity on prey species richness are outweighed by regional extinctions through predation.
PLOS ONE | 2012
Romana Limberger; Stephen A. Wickham
While the effect of habitat connectivity on local and regional diversity has been analysed in a number of studies, time-dependent dynamics in metacommunities have received comparatively little consideration. When local patches of a metacommunity are identical in environmental conditions but differ in initial community composition, dispersal among patches may result in homogenization of local communities. In a microcosm experiment with benthic ciliates, we tested the hypothesis that the effect of connectivity on diversity is time-dependent and only transitory, with the degree of connectivity affecting the time to homogenization but not the final outcome. Six microcosms were connected to a metacommunity with one of three levels of connectivity. The six patches differed in initial community composition but were identical in environmental conditions. We found a time-dependent and transitory effect of connectivity on local and regional richness and on local Shannon diversity, while Bray-Curtis dissimilarity and regional Shannon diversity were persistently affected by connectivity. Local richness increased and regional richness decreased with connectivity during the initial phase of the experiment but soon converged to similar values in all three connectivity treatments. Local Shannon diversity was unimodally related to time, with maximum diversity reached sooner with high than with medium or low connectivity. Eventually, however, local diversity converged to similar values irrespective of connectivity. At the regional scale, Shannon diversity was persistently lower with high than with low connectivity. While initial differences in community composition vanished with medium and high connectivity, they were maintained with low connectivity resulting in persistently high beta and regional diversity. The effect of connectivity on ciliate community composition translated down to the algal resource, as stronger dominance of the superior competitor with high and medium connectivity resulted in stronger depletion of the resource.
Marine Ecology Progress Series | 2002
Ulrich Sommer; Ulrike G. Berninger; Ruth Böttger-Schnack; Astrid Cornils; Wilhelm Hagen; Thomas F. Hansen; Tariq Al-Najjar; Anton F. Post; Sigrid B. Schnack-Schiel; Herwig Stibor; Dorothea Stübing; Stephen A. Wickham
Aquatic Microbial Ecology | 2001
Rita Adrian; Stephen A. Wickham; Nancy M. Butler