Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen B. Hall is active.

Publication


Featured researches published by Stephen B. Hall.


Current Opinion in Structural Biology | 2002

Pulmonary surfactant: phase behavior and function

Barbora Piknova; Vincent Schram; Stephen B. Hall

Pulmonary surfactant functions by first flowing rapidly into the alveolar air/water interface, but then resisting collapse from the surface when the adsorbed interfacial film is compressed during exhalation. Widely accepted models emphasize the importance of phase behavior in both processes. Recent studies show, however, that fluidity is a relatively minor determinant of adsorption and that solid films, which resist collapse, can form by kinetic processes unrelated to equilibrium phase behavior.


Biophysical Journal | 1996

Lateral phase separation in interfacial films of pulmonary surfactant

Bohdana M. Discher; Kevin M. Maloney; William R. Schief; David W. Grainger; Viola Vogel; Stephen B. Hall

To determine if lateral phase separation occurs in films of pulmonary surfactant, we used epifluorescence microscopy and Brewster angle microscopy (BAM) to study spread films of calf lung surfactant extract (CLSE). Both microscopic methods demonstrated that compression produced domains of liquid-condensed lipids surrounded by a liquid-expanded film. The temperature dependence of the pressure at which domains first emerged for CLSE paralleled the behavior of its most prevalent component, dipalmitoyl phosphatidylcholine (DPPC), although the domains appeared at pressures 8-10 mN/m higher than for DPPC over the range of 20-37 degrees C. The total area occupied by the domains at room temperature increased to a maximum value at 35 mN/m during compression. The area of domains reached 25 +/- 5% of the interface, which corresponds to the predicted area of DPPC in the monolayer. At pressures above 35 mN/m, however, both epifluorescence and BAM showed that the area of the domains decreased dramatically. These studies therefore demonstrate a pressure-dependent gap in the miscibility of surfactant constituents. The monolayers separate into two phases during compression but remain largely miscible at higher and lower surface pressures.


Biophysical Journal | 2001

Rapid Compression Transforms Interfacial Monolayers of Pulmonary Surfactant

Jonathan M. Crane; Stephen B. Hall

Films of pulmonary surfactant in the lung are metastable at surface pressures well above the equilibrium spreading pressure of 45 mN/m but commonly collapse at that pressure when compressed in vitro. The studies reported here determined the effect of compression rate on the ability of monolayers containing extracted calf surfactant at 37 degrees C to maintain very high surface pressures on the continuous interface of a captive bubble. Increasing the rate from 2 A(2)/phospholipid/min (i.e., 3% of (initial area at 40 mN/m)/min) to 23%/s produced only transient increases to 48 mN/m. Above a threshold rate of 32%/s, however, surface pressures reached > 68 mN/m. After the rapid compression, static films maintained surface pressures within +/- 1 mN/m both at these maximum values and at lower pressures following expansion at < 5%/min to > or = 45 mN/m. Experiments with dimyristoyl phosphatidylcholine at 37 degrees C produced similar results. These findings indicate that compression at rates comparable to values in the lungs can transform at least some phospholipid monolayers from a form that collapses readily at the equilibrium spreading pressure to one that is metastable for prolonged periods at higher pressures. Our results also suggest that transformation of surfactant films can occur without refinement of their composition.


Biophysical Journal | 2001

Discrepancy between phase behavior of lung surfactant phospholipids and the classical model of surfactant function.

Barbora Piknova; William R. Schief; Viola Vogel; Bohdana M. Discher; Stephen B. Hall

The studies reported here used fluorescence microscopy and Brewster angle microscopy to test the classical model of how pulmonary surfactant forms films that are metastable at high surface pressures in the lungs. The model predicts that the functional film is liquid-condensed (LC) and greatly enriched in dipalmitoyl phosphatidylcholine (DPPC). Both microscopic methods show that, in monolayers containing the complete set of phospholipids from calf surfactant, an expanded phase persists in coexistence with condensed domains at surface pressures approaching 70 mN/m. Constituents collapsed from the interface above 45 mN/m, but the relative area of the two phases changed little, and the LC phase never occupied more than 30% of the interface. Calculations based on these findings and on isotherms obtained on the continuous interface of a captive bubble estimated that collapse of other constituents increased the mol fraction of DPPC to no higher than 0.37. We conclude that monolayers containing the complete set of phospholipids achieve high surface pressures without forming a homogeneous LC film and with a mixed composition that falls far short of the nearly pure DPPC predicted previously. These findings contradict the classical model.


Biophysical Journal | 1999

Persistence of Phase Coexistence in Disaturated Phosphatidylcholine Monolayers at High Surface Pressures

Jonathan M. Crane; Günther Putz; Stephen B. Hall

Prior reports that the coexistence of the liquid-expanded (LE) and liquid-condensed (LC) phases in phospholipid monolayers terminates in a critical point have been compromised by experimental difficulties with Langmuir troughs at high surface pressures and temperatures. The studies reported here used the continuous interface of a captive bubble to minimize these problems during measurements of the phase behavior for monolayers containing the phosphatidylcholines with the four different possible combinations of palmitoyl and/or myristoyl acyl residues. Isothermal compression produced surface pressure-area curves for dipalmitoyl phosphatidylcholine (DPPC) that were indistinguishable from previously published data obtained with Langmuir troughs. During isobaric heating, a steep increase in molecular area corresponding to the main LC-LE phase transition persisted for all four compounds to 45 mN/m, at which collapse of the LE phase first occurred. No other discontinuities to suggest other phase transitions were apparent. Isobars for DPPC at higher pressures were complicated by collapse of the monolayer, but continued to show evidence up to 65 mN/m for at least the onset of the LC-LE transition. The persistence of the main phase transition to high surface pressures suggests that a critical point for these monolayers of disaturated phospholipids is either nonexistent or inaccessible at an air-water interface.


Biophysical Journal | 1999

Phase Separation in Monolayers of Pulmonary Surfactant Phospholipids at the Air–Water Interface: Composition and Structure

Bohdana M. Discher; William R. Schief; Viola Vogel; Stephen B. Hall

The phase behavior of monolayers containing the complete set of purified phospholipids (PPL) obtained from calf surfactant was investigated as a model for understanding the phase transitions that precede compression of pulmonary surfactant to high surface pressure. During compression, both fluorescence microscopy and Brewster angle microscopy (BAM) distinguished domains that separated from the surrounding film. Quantitative analysis of BAM grayscales indicated optical thicknesses for the PPL domains that were similar to the liquid condensed phase for dipalmitoyl phosphatidylcholine (DPPC), the most abundant component of pulmonary surfactant, and higher and less variable with surface pressure than for the surrounding film. BAM also showed the optical anisotropy that indicates long-range orientational order of tilted lipid chains for the domains, but not for the surrounding film. Fluorescence microscopy shows that addition of DPPC to the PPL increased the area of the domains. At fixed surface pressures from 20-40 mN/m, the total area of each phase grew in proportion with the mol fraction of DPPC. This constant variation allowed analysis of the DPPC mol fraction in each phase, construction of a simple phase diagram, and calculation of the molecular area for each phase. Our results indicate that the phase surrounding the domains is more expanded and compressible, and contains reduced amounts of DPPC in addition to the other phospholipids. The domains contain a mol fraction for DPPC of at least 96%.


Biophysical Journal | 2000

Distinct Steps in the Adsorption of Pulmonary Surfactant to an Air-Liquid Interface

Robert W. Walters; Robert R. Jenq; Stephen B. Hall

To investigate the mechanisms by which vesicles of pulmonary surfactant adsorb to an air-liquid interface, we measured the effect of different phospholipids and of their concentration both in the subphase and at the interface on this process. Adsorbing vesicles contained the hydrophobic surfactant proteins mixed with the following four sets of surfactant phospholipids that varied the content of anionic headgroups and mixed acyl chains independently: the complete set of purified phospholipids (PPL) from calf surfactant; modified PPL (mPPL) from which the anionic phospholipids were removed; a mixture of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylglycerol (DPPG) (9:1, mol:mol); and DPPC alone. The initial reduction in surface tension depended strongly on the anionic phospholipids and the subphase concentration. The acyl groups had no effect. Adsorption beyond the initial stage depended more on the mixed acyl groups, became increasingly independent of subphase concentration, and was determined instead by the interfacial concentration of the surface film. The different constituents produced the same effects in vesicles adsorbing to a clean interface or in a preexisting film to which vesicles of SP:DPPC adsorbed. Adsorption for vesicles of SP:PPL adsorbing to DPPC or of SP:DPPC to PPL above a certain threshold surface concentration followed exactly the same isotherm. Our results fit best with a two-step model for adsorption. The anionic phospholipids first promote the initial juxtaposition of vesicles to the interface. Compounds with mixed acyl constituents at the point of contact between vesicle and interface then facilitate fusion with the surface.


Respiratory Physiology & Neurobiology | 2008

The biophysical function of pulmonary surfactant

Sandra Rugonyi; Samares C. Biswas; Stephen B. Hall

Pulmonary surfactant lowers surface tension in the lungs. Physiological studies indicate two key aspects of this function: that the surfactant film forms rapidly; and that when compressed by the shrinking alveolar area during exhalation, the film reduces surface tension to very low values. These observations suggest that surfactant vesicles adsorb quickly, and that during compression, the adsorbed film resists the tendency to collapse from the interface to form a 3D bulk phase. Available evidence suggests that adsorption occurs by way of a rate-limiting structure that bridges the gap between the vesicle and the interface, and that the adsorbed film avoids collapse by undergoing a process of solidification. Current models, although incomplete, suggest mechanisms that would partially explain both rapid adsorption and resistance to collapse as well as how different constituents of pulmonary surfactant might affect its behavior.


Biophysical Journal | 2003

Liquid-Crystalline Collapse of Pulmonary Surfactant Monolayers

William R. Schief; Meher Antia; Bohdana M. Discher; Stephen B. Hall; Viola Vogel

During exhalation, the surfactant film of lipids and proteins that coats the alveoli in the lung is compressed to high surface pressures, and can remain metastable for prolonged periods at pressures approaching 70 mN/m. Monolayers of calf lung surfactant extract (CLSE), however, collapse in vitro, during an initial compression at approximately 45 mN/m. To gain information on the source of this discrepancy, we investigated how monolayers of CLSE collapse from the interface. Observations with fluorescence, Brewster angle, and light scattering microscopies show that monolayers containing CLSE, CLSE-cholesterol (20%), or binary mixtures of dipalmitoyl phosphatidylcholine(DPPC)-dihydrocholesterol all form bilayer disks that reside above the monolayer. Upon compression and expansion, lipids flow continuously from the monolayer into the disks, and vice versa. In several respects, the mode of collapse resembles the behavior of other amphiphiles that form smectic liquid-crystal phases. These findings suggest that components of surfactent films must collapse collectively rather than being squeezed out individually.


Cell Death & Differentiation | 1997

Unscheduled apoptosis during acute inflammatory lung injury.

Lin L Mantell; Jeffrey A. Kazzaz; Jing Xu; Thomas Palaia; Bruno Piedboeuf; Stephen B. Hall; Gregory C. Rhodes; Gang Niu; Alan F Fein; Stuart Horowitz

Apoptosis is a mode of cell death currently thought to occur in the absence of inflammation. In contrast, inflammation follows unscheduled events such as acute tissue injury which results in necrosis, not apoptosis. We examined the relevance of this paradigm in three distinct models of acute lung injury; hyperoxia, oleic acid, and bacterial pneumonia. In every case, it was found that apoptosis is actually a prominent component of the acute and inflammatory phase of injury. Moreover, using strains of mice that are differentially sensitive to hyperoxic lung injury we observed that the percent of apoptotic cells was well correlated with the severity of lung injury. These observations suggest that apoptosis may be one of the biological consequences during acute injury and the failure to remove these apoptotic cells may also contribute to the inflammatory response.

Collaboration


Dive into the Stephen B. Hall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge