Stephen Bauters
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Bauters.
Scientific Reports | 2016
Pieter Tack; Marine Cotte; Stephen Bauters; Emmanuel Brun; Dipanjan Banerjee; Wim Bras; Claudio Ferrero; Daniel Delattre; Vito Mocella; Laszlo Vincze
The writing in carbonized Herculaneum scrolls, covered and preserved by the pyroclastic events of the Vesuvius in 79 AD, was recently revealed using X-ray phase-contrast tomography, without the need of unrolling the sensitive scrolls. Unfortunately, some of the text is difficult to read due to the interference of the papyrus fibers crossing the written text vertically and horizontally. Recently, lead was found as an elemental constituent in the writing, rendering the text more clearly readable when monitoring the lead X-ray fluorescence signal. Here, several hypotheses are postulated for the origin and state of lead in the papyrus writing. Multi-scale X-ray fluorescence micro-imaging, Monte Carlo quantification and X-ray absorption microspectroscopy experiments are used to provide additional information on the ink composition, in an attempt to determine the origin of the lead in the Herculaneum scrolls and validate the postulated hypotheses.
Journal of Analytical Atomic Spectrometry | 2014
Stepan M. Chernonozhkin; Steven Goderis; Stephen Bauters; Bart Vekemans; Laszlo Vincze; Philippe Claeys; Frank Vanhaecke
The capabilities and limitations of nanosecond laser ablation ICP-mass spectrometry for bulk and spatially resolved (elemental mapping) analysis of iron meteorites were assessed. The quantitative data obtained were compared to those obtained i. via multi-element solution ICP-MS (after digestion) relying on external calibration and, ii. high-accuracy determination of selected platinum group elements using solution ICP-MS after target element isolation using anion exchange chromatography and deploying isotope dilution. Results generated by the different methods described show good agreement. Significant matrix effects were observed to affect the results of the ns-LA-ICP-MS analysis of iron meteorites, making quantification via a matrix-matched standard a prerequisite. Careless use of intensity distribution maps without proper correction for laser-solid coupling efficiency can lead to incorrect interpretation of the element maps. ns-LA-ICP-MS was shown to be suitable for fast and quasi-nondestructive analysis of iron meteorites, not only homogeneous ataxites and hexahedrites, but also more heterogeneous ones, when considering ablated areas of a sufficient size. In the context of elemental mapping using LA-ICP-MS, Pearsons product–moment correlation analysis was demonstrated to be a powerful tool that can provide valuable information on the fractionation of the elements in the parent bodies of meteorites.
Analytical Chemistry | 2014
Pieter Tack; Jan Garrevoet; Stephen Bauters; Bart Vekemans; Brecht Laforce; Eric Van Ranst; Dipanjan Banerjee; Alessandro Longo; Wim Bras; Laszlo Vincze
X-ray absorption near-edge structure (XANES) spectroscopy is a well-known nondestructive technique that allows for chemical state and local structure determination. Spatially resolved oxidation state imaging is possible performing full-field transmission mode XANES experiments, providing chemical state information on the illuminated sample area, but these experiments are limited to thin, concentrated samples. Here we present the use of a unique energy dispersive (ED) pnCCD detector, the SLcam, for full-field fluorescence mode XANES experiments, thereby significantly relaxing the constraints on sample thickness. Using this new detection methodology, spatially resolved chemical state information on millimeter-sized sample areas can be obtained with microscopic resolution in moderate measuring times (less than 15 h), obtaining a XANES profile for each of nearly 70,000 points in a single measurement without the need of scanning the sample through the beam. Besides a description of the use of this detector for micro-XANES applications, we also present the proof of concept for fluorescence mode micro-XANES using a Fe(0)/Fe2O3 model sample and a Nitisol soil sample, which was measured to obtain iron chemical state distribution information.
Scientific Reports | 2015
Eva Vergucht; Toon Brans; Filip Beunis; Jan Garrevoet; Maarten De Rijcke; Stephen Bauters; David Deruytter; Michiel B. Vandegehuchte; Ine Van Nieuwenhove; Colin R. Janssen; Manfred Burghammer; Laszlo Vincze
We report on a radically new elemental imaging approach for the analysis of biological model organisms and single cells in their natural, in vivo state. The methodology combines optical tweezers (OT) technology for non-contact, laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time. The main objective of this work is to establish a new method for in vivo elemental imaging in a two-dimensional (2D) projection mode in free-standing biological microorganisms or single cells, present in their aqueous environment. Using the model organism Scrippsiella trochoidea, a first proof of principle experiment at beamline ID13 of the European Synchrotron Radiation Facility (ESRF) demonstrates the feasibility of the OT XRF methodology, which is applied to study mixture toxicity of Cu-Ni and Cu-Zn as a result of elevated exposure. We expect that the new OT XRF methodology will significantly contribute to the new trend of investigating microorganisms at the cellular level with added in vivo capability.
Analytical Chemistry | 2015
Jan Garrevoet; Bart Vekemans; Stephen Bauters; Arne Demey; Laszlo Vincze
The analytical characterization and an application example of a novel laboratory X-ray fluorescence (μXRF) microprobe is presented, which combines monochromatic, focused X-ray beam excitation with a high-performance silicon drift detector (SDD) and two-dimensional/three-dimensional (2D/3D) scanning capability. Because of the monochromatic excitation, below the (multiple) Compton/Rayleigh scattering peak region, the XRF spectra obtained by this laboratory spectrometer has similarly high peak-to-background ratios as those which can be obtained at synchrotron sources. However, the flux density difference between the proposed laboratory instrument and current synchrotron end stations is on the order of several orders of magnitude. As a result, sub-ppm minimum detection limits (MDL) for transition metals are obtained for a variety of sample matrices. The monochromatic excitation also allows for the efficient use of an iterative Monte Carlo simulation algorithm to obtain quantitative information on the analyzed samples. The analytical characteristics of this instrument and quantitative results, in combination with an iterative reverse Monte Carlo simulation algorithm, will be demonstrated using measurements conducted on an iron-containing meteorite.
Journal of Synchrotron Radiation | 2015
Eva Vergucht; Toon Brans; Filip Beunis; Jan Garrevoet; Stephen Bauters; Maarten De Rijcke; David Deruytter; Colin R. Janssen; Christian Riekel; Manfred Burghammer; Laszlo Vincze
Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.
RSC Advances | 2016
Pieter Tack; Stephen Bauters; John C. Mauro; Morten Mattrup Smedskjær; Bart Vekemans; Dipanjan Banerjee; Wim Bras; Laszlo Vincze
It is crucial to understand the structural origins of macroscopic properties in silicate glasses for their high-tech applications. An example of such an application is chemically strengthened boroaluminosilicate glasses that are exposed to an ion exchange process during which alkali ions (e.g. Na+) are replaced by larger (e.g. K+) ions. Despite the empirically thorough understanding of this exchange process, much less is known about the fundamental physics of the process. Since Fe atoms are a suitable probe for monitoring chemical stress-induced changes in the local structure in the chemically strengthened glasses, a set of chemically strengthened boroaluminosilicate glasses containing 1 mol% Fe2O3 are here studied using depth-resolved confocal X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Information on the Fe oxidation state, coordination number, and bond distance as a function of the sample depth and glass composition is obtained. These new insights on chemical stress-induced changes will aid in the further development and improvement of such damage-resistant glasses.
Analytical Chemistry | 2018
Stephen Bauters; Pieter Tack; Jennifer Rudloff-Grund; Dipanjan Banerjee; Alessandro Longo; Bart Vekemans; Wim Bras; Frank E. Brenker; Roelof van Silfhout; Laszlo Vincze
A novel plug-and-play setup based on polycapillary X-ray optics enables three-dimensional (3D) confocal X-ray fluorescence (XRF) and X-ray absorption spectroscopy down to 8 × 8 × 11 μm3 (17 keV) at the European Synchrotron Radiation Facility Collaborative Research Group Dutch-Belgian Beamline, BM26A. A complete description and analytical characterization is presented, together with two recently performed experimental cases. In Deep Earth diamond São Luiz-Frankfurt am Main 16, an olivine-rich inclusion was mapped with full 3D XRF elemental imaging. The preliminary tests on Iron Gall ink contained in an historical document, a letter from the court of King Philip II of Spain, reveal both the delicate nature of Iron Gall ink and the lack of Fe-Ni chemical bonding.
Applied Physics A | 2016
Olivier Schalm; Amandine Crabbé; Patrick Storme; Rita Wiesinger; Arianna Gambirasi; Eva Grieten; Pieter Tack; Stephen Bauters; Christoph Kleber; Monica Favaro; Dominique Schryvers; Laszlo Vincze; H. Terryn; Alessandro Patelli
Journal of Cultural Heritage | 2017
Eva Grieten; Olivier Schalm; Pieter Tack; Stephen Bauters; Patrick Storme; Nicolas Gauquelin; Joost Caen; Alessandro Patelli; Laszlo Vincze; Dominique Schryvers