Stephen Boult
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Boult.
Environmental Pollution | 1994
Stephen Boult; D.N. Collins; Keith N. White; C.D. Curtis
Sampling of the Afon Goch over a 14-month period revealed maximum dissolved Fe, Al, Mn, Cu and Zn concentrations of 259, 167, 49, 60 and 42 mg dm(-3), respectively, and pH as low as 2.3, making it one of the most metal- and acid-contaminated streams in the UK. The river produces particulates by precipitation of ferrihydrite, due to the entry of near-neutral tributary waters, under all discharge conditions. Consequently, metal transport in this stream is dominated by processes different from those in less contaminated streams. The stream acts as a sink for contaminants, except under high discharge, when accumulated metals are flushed from the system. The implications of these observations for the monitoring and management of streams polluted by acid mine drainage are discussed.
Hydrological Processes | 1997
Stephen Boult; Nicholas Johnson; Charles D. Curtis
Material collected over a month on plates attached to the bed of the Afon Goch, Anglesey, a stream highly contaminated by acid mine drainage (AMD), was either examined intact by electron microscopy or suspended and cultured to reveal the presence of microbiota. Certain of the aerobic microbiota were identified, the genus Pseudomonas formed the commonest isolate and cultures of Serratia plymuthica were grown in order to compare the biofilms formed with the material collected in the Afon Goch. The material at the sediment–water interface of the Afon Goch was of similar underlying morphology to that of the cultured biofilms. However, the former had a superficial granular coating of equidimensional (60–100 nm) and evenly spaced iron rich particles (determined by X-ray microanalysis). The sediment–water interface of this AMD-contaminated stream is therefore best described as a highly contaminated biofilm. Evidence from previous work suggests that the streambed is active in iron removal from the water column. The intimate association of iron with microbiota at the streambed, therefore, implies that iron flux prediction may not be possible from physical and chemical data alone but requires knowledge of biofilm physiology and ecology. Microbially mediated metal precipitation, both by single bacteria and by biofilms, has been reported elsewhere but mass balance considerations suggest that this explanation cannot hold good for the large amounts of iron hydroxide depositing from waters of the prevalent pH and redox status. Filtered stream water analyses indicate the presence of colloidal iron hydroxide and also its removal downstream where ochreous (iron hydroxide rich) material accumulates. The process of iron immobilization is likely to be the attraction and physical trapping of colloidal iron hydroxide by extracellular polymeric substances (EPS) which constitute the matrix of biofilms.
Mineralogical Magazine | 1996
Stephen Boult
Abstract The Afon Goch (Anglesey, UK) is a short (12 km source to estuary) stream highly contaminated by acid mine drainage (AMD) throughout its length, due to past-mining at the head of the stream. Metal distribution is strongly controlled by the pH, which increases downstream particularly at confluences with two unpolluted tributaries. A pH increase causes precipitation of metals, primarily Fe as hydroxide, thus altering the transport of the metal load, potentially allowing storage of metal within the river as deposited material. However, further work suggests that the controls on whether metal can behave non-conservatively, and therefore the controls on metal distribution, are more complicated than being purely pH dependent. This is because much of the Fe load, even at the low pH at the head of the stream, is not soluble Fe3+ but colloidal Fe hydroxide. Consequently, coagulation is a requisite intermediate step between precipitation and potential for settling. It is possible that in reaches of the stream away from tributary confluences, the process of coagulation is the predominant influence on metal distribution. Furthermore, because much of the metal load in the water column is very fine, its deposition results in a sediment in which the metals can be intimately associated with a biofilm at the sediment/water interface. Such associations change both deposition and erosion characteristics of the sediment and have implications for subsequent diagenesis and mineral morphology.
Biofouling | 2009
J. R. Brydie; Roy A. Wogelius; Stephen Boult; C. M. Merrifield; David J. Vaughan
Biofilm development on mineral surfaces and related changes in surface reactivity were studied using batch and flow through experiments. An artificial groundwater was used as the primary nutrient medium, Pseudomonas aeruginosa (PAO1) was the model microbial organism and ‘mineral’ surfaces were kept as simple as possible by using glass or a polished quartz tile. Experiments were also completed with very low concentrations (100 mg l−1) of iron, Fe2+ , in the solution. In situ confocal laser scanning microscopy of developing colonies during the live growth phase, and of thick, mature biofilms, revealed only sporadic coverage of biofilm cells and associated polymers at the ‘mineral–microbe interface’. Imaging and analysis of biofilm-conditioned surfaces doped with Fe2+ -rich solutions allowed the locus and form of Fe-rich mineral precipitation to be determined and show that biological surface components can cause mineral precipitation from dilute dissolved species which might otherwise remain in solution.
Urban Water Journal | 2004
Stephen Boult; Nathan A. Boyd
Variation in oxygen demand (OD) with depth, of both the solids and porewaters, in a contaminated urban sediment was measured in order to predict the response of the sediment water system to future improvements in water quality and partial dredging. The OD (24?h) of the solid was relatively invariant with depth, and almost three orders of magnitude greater than that of the corresponding porewater. Porewater OD was also invariant with depth despite an increasing concentration of reduced species; the potential OD of these in the deepest samples was about 17% of that of the solid. Dissolved organic carbon (DOC) formed the major proportion of these reduced species, so the slow development of porewater OD may be a manifestation of the time required for the development of an oxic microbial flora, and its invariance suggests there may be a decrease in lability of DOC with depth. OD of the solid appeared to be limited by decreasing availability of dissolved oxygen (DO) suggesting that any deeper DO penetration into these sediments may increase OD beyond that exerted under present conditions.
Applied Geochemistry | 2001
Stephen Boult; Ravin Jugdaohsingh; Keith N. White; Barry Smith; John Powell
Abstract Reaction with periodic acid-Schiff reagent (PAS), a modified histochemical staining procedure, was used as an index of carbohydrate content of natural waters. Material derived from the standard method for extraction of soluble humic and fulvic acids (HFA) from natural waters, namely adsorption onto and subsequent elution from DEAE cellulose and XAD resin, showed 5–31% of its C content to be carbohydrate. On passage of pure polysaccharide through a DEAE column, 88% of the loading was retained and 50% was subsequently eluted into what would be classified as the HA fraction. Clearly DEAE extraction cannot be regarded as specific for HFA. Similarly, samples were analysed from 62 lentic (non-flowing) waters of varied chemistry and trophic status in NW England. 22%±5% (mean±S.D.) of dissolved organic C (DOC) was PAS+. The proportion of the DOC that reacted positively to the PAS test exceeded 30% of total DOC in sites where DOC concentration was low (
Journal of Water Resources Planning and Management | 2015
S. R. Mounce; J. W. Gaffney; Stephen Boult; J. B. Boxall
AbstractWater distribution networks are not inert transport systems. The high-quality water produced at water treatment works is subject to a variety of complex and interacting physical, chemical, and biological interactions within these highly variable, high-surface reactors. In particular, the aging and deteriorating asset condition in water distribution systems can result in a degradation of water quality delivered to the customer, often experienced as discoloration caused by increasing amounts of fine particulate matter. Here, it is proposed that by assessing measured turbidity over time, in particular its correlation with local hydraulics, an assessment of change in risk of fouling can be obtained and asset deterioration inferred. This paper presents a methodology for pairwise monitoring of a hydraulic parameter (flow or pressure) and turbidity using wavelet-based semblance analysis—a novel methodology from another domain, which is applied for the first time to water quality data in distribution syst...
Environmental Science & Technology | 2012
Alison Jackson; John W. Gaffney; Stephen Boult
At least 93% of Fe(II) remained free, as defined by ferrozine assay under anoxic conditions in the presence of humic acid (HA) and two simulated landfill leachates of different maturities. However, tangential flow ultrafiltration showed a weaker but more extensive interaction of Fe with organic carbon (OC); 90% of Fe associated with the less mature leachate. Despite the existence of this weak interaction under anoxic conditions, there was no difference in iron(III) (hydr)oxide production whether HA was added prior to or coincident with the oxidation of Fe(II) on exposure to oxic conditions. Under oxic conditions ferrozine showed that more Fe(II) bound to OC, up to 50% to HA. However, this occurs via oxidation of Fe(II) to Fe(III), which is bound and then thermally reduced. This affinity for Fe(III) and the ability to carry out thermal reduction both increase with the maturity of the OC. The rate at which ferrozine-defined free Fe(II) was lost on exposure to dissolved oxygen was also enhanced by the more mature OC, while it was slowed by acetogenic leachate. The slowing must be a consequence of the filtration-defined Fe(II)/OC interaction.
Science of The Total Environment | 2011
Grigorios Papathanasiou; Keith N. White; Rachel C. Walton; Stephen Boult
Extension of the conditions under which Al toxicity is tested is required. Environmentally representative preparation of waters is used in investigating roles of alginate (AA) and humic acids (HA) in partitioning of Al (0.5 mg L(-1)), subsequent uptake and accumulation by and toxicity to Lymnaea stagnalis. HA and AA did not alter precipitation of Al(OH)3, but altered subsequent behaviour of Al. High (40 mg L(-1)) HA concentrations, and to a lesser extent AA, prevented settling and availability for benthic grazing but made deposited Al more likely to be ingested. HA detoxified but AA increased toxicity relative to Al alone. Low concentration (4 mg L(-1)) AA and HA do not change partitioning but increase uptake; they both detoxify, but AA less than HA. The study shows OC:Al ratio is critical in predicting Al behaviour in natural waters, also uptake is mediated by snail behaviour, not solely a function of concentration and form of Al. Therefore, predicting Al behaviour will be subject to errors in determining relevant water composition and response of biota to the new speciation. However, with respect to toxicity, rather than other aspects of Al behaviour, different ratios of HA and Al are insignificant compared to whether AA is present rather than HA.
Hydrological Processes | 1999
Stephen Boult; Jonathan Rebbeck
The Manchester Ship Canal (MSC) has been the recipient of domestic and trade effluent since 1895, it continues to be grossly polluted. In 1985 the dock basins, now known as Salford Quays were isolated from the canal inorder to improve water quality and encourage redevelopment. Subsequent to isolation the dock basins received no effluent or drainage and Helixor pumps were installed to improve circulation, thereby preventing stratification and bottom water anoxia. Analysis of solid material, pore waters and phospholipid fatty acids (PLFA) in cores taken from Salford Quays and the MSC was carried out to assess changes in sediment characteristics that might affect water quality. Loss of carbon was apparent in the upper sediment of Salford Quays, as was a greater proportion of reducible Fe, Mn, Zn and Cd compared with the MSC. In Salford Quays a superficial peak in Fe and Zn concentration appeared to be attributable to migration of metals in the pore water and precipitation of Fe oxyhydroxide at the oxic sediment water interface. Despite these differences, NHSOconcentration pore water profiles were similar in both sediments if the MSC sediments were considered from a point below their top layers, which appeared to be composed of freshly deposited sewage. Bacterial biomass extrapolated from PLFA concentration also suggested that the upper sediment of the MSC was largely faecal. PLFA analyses to characterize changes in the microbial community, however, did not reveal any systematic changes. That this may have been because of an absence of vertical zonation was supported by pore water analyses. It was also apparent that the lack of systematic change might be due at least in part to an artefact of vestigial PLFA signatures, resulting from deposition and burial, and the need for finer vertical resolution in the sampling procedure. Despite incomplete and some contradictory findings it appears that although metal mobilization may result from the development of an oxic sediment water interface, the extremely high original organic content of the sediment ensures that even after 10 years it exerts a high oxygen demand. Consequently, sediment management is likely to be a long-term commitment and as remediation proceeds the importance of continuity in management will increase. Copyright