Stephen C. F. Palmer
University of Aberdeen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen C. F. Palmer.
Biological Reviews | 2012
Dries Bonte; Hans Van Dyck; James M. Bullock; Aurélie Coulon; María del Mar Delgado; Melanie Gibbs; Valérie Lehouck; Erik Matthysen; Karin Mustin; Marjo Saastamoinen; Nicolas Schtickzelle; Virginie M. Stevens; Sofie Vandewoestijne; Michel Baguette; Kamil A. Bartoń; Tim G. Benton; Audrey Chaput-Bardy; Jean Clobert; Calvin Dytham; Thomas Hovestadt; Christoph M. Meier; Stephen C. F. Palmer; Camille Turlure; Justin M. J. Travis
Dispersal costs can be classified into energetic, time, risk and opportunity costs and may be levied directly or deferred during departure, transfer and settlement. They may equally be incurred during life stages before the actual dispersal event through investments in special morphologies. Because costs will eventually determine the performance of dispersing individuals and the evolution of dispersal, we here provide an extensive review on the different cost types that occur during dispersal in a wide array of organisms, ranging from micro‐organisms to plants, invertebrates and vertebrates. In general, costs of transfer have been more widely documented in actively dispersing organisms, in contrast to a greater focus on costs during departure and settlement in plants and animals with a passive transfer phase. Costs related to the development of specific dispersal attributes appear to be much more prominent than previously accepted. Because costs induce trade‐offs, they give rise to covariation between dispersal and other life‐history traits at different scales of organismal organisation. The consequences of (i) the presence and magnitude of different costs during different phases of the dispersal process, and (ii) their internal organisation through covariation with other life‐history traits, are synthesised with respect to potential consequences for species conservation and the need for development of a new generation of spatial simulation models.
Ecology | 2003
Stephen C. F. Palmer; Alison J. Hester; David A. Elston; Iain J. Gordon; Susan E. Hartley
The boundaries between vegetation patches are focal points for dynamic interactions between plant communities, particularly in grazed ecosystems where vegetation types may differ in their acceptability to herbivores. Here we show that key vegetation resources attract herbivores, and the surrounding vegetation receives a higher impact than if it is associated with patches of less preferred vegetation (an example of apparent competition). We studied the influence of proximity to preferred grass patches on utilization of the less preferred dwarf shrub, heather (Calluna vulgaris) by red deer (Cervus elaphus) and sheep (Ovis aries) at a range of spatial scales in the Cairngorm Mountains of Scotland, UK. There was a sharp decline in heather utilization with increasing distance from the edges of grass patches. The proportion of grass in the local landscape (within 1 km) had a significant positive effect on heather utilization both at the grass–heather boundary and beyond 5 m from the grass patch. There was also a significant effect of dominant grass species on the utilization of heather within 50 cm of the grass-patch edge, with utilization around Agrostis/Festuca patches (most preferred) being greater than around Nardus-dominated patches, and lowest around patches of Molinia. The greatest contribution to variation in heather utilization was at the smallest scale, and variance components decreased as spatial scale increased, making it impossible to predict local heather utilization (i.e., at the scale of individual plants and of individual bites by foraging ungulates) from large-scale parameters alone, such as herbivore density. These findings emphasize that vegetation–herbivore interactions are localized within the landscape, and that it is these hot spots which are the key fulcrum for vegetation dynamics.
Biology Letters | 2005
Justin M. J. Travis; Stephen C. F. Palmer
Theoretical models frequently assume that the rate at which a searching predator encounters prey increases linearly with prey density. In a recent experiment using great tits searching for winter moth caterpillars, the time to find the first prey item did not decline as quickly with density as the standard theory assumes. Using a spatial simulation model, we show that prey aggregation and/or spatially correlated searching behaviour by the predator can generate a range of relationships, including results that are qualitatively similar to those found in the great tit experiment. We suggest that further experiments are required to determine whether the explanation proposed here is correct, and that theoretical work is needed to determine how this behaviour is likely to influence the ecological and evolutionary dynamics of predator–prey communities.
International Journal for Parasitology | 2011
Penelope A. Hancock; Robert Brackley; Stephen C. F. Palmer
Seasonal variation in temperature is known to drive annual patterns of tick activity and can influence the dynamics of tick-borne diseases. An age-structured model of the dynamics of Ixodes ricinus populations was developed to explore how changes in average temperature and different levels of temperature variability affect seasonal patterns of tick activity and the transmission of tick-borne diseases. The model produced seasonal patterns of tick emergence that are consistent with those observed throughout Great Britain. Varying average temperature across a continuous spectrum produced a systematic pattern in the times of peak emergence of questing ticks which depends on cumulative temperature over the year. Examination of the effects of between-year stochastic temperature variation on this pattern indicated that peak emergence times are more strongly affected by temperature stochasticity at certain levels of average temperature. Finally the model was extended to give a simple representation of the dynamics of a tick-borne disease. A threshold level of annual cumulative temperature was identified at which disease persistence is sensitive to stochastic temperature variation. In conclusion, the effect of changing patterns of temperature variation on the dynamics of I. ricinus ticks and the diseases they transmit may depend on the cumulative temperature over the year and will therefore vary across different locations. The results also indicate that diapause mechanisms have an important influence on seasonal patterns of tick activity and require further study.
Landscape Ecology | 2005
Stephen C. F. Palmer; Iain J. Gordon; Alison J. Hester; Robin J. Pakeman
Grazing by large herbivores is a major determinant of vegetation dynamics in many semi-natural ecosystems, including the replacement of heather moorland by rough grassland in the British uplands. Herbivore foraging is influenced by vegetation patterns and, in turn, their grazing drives vegetation dynamics. Although vegetation impacts are local, spatially heterogeneous local impacts can have different consequences as would the same impacts distributed uniformly. We constructed a simulation model of the spatial effects of grazing by sheep on the vegetation dynamics of heather moorland, a vegetation community of international conservation importance in the UK. The model comprised three submodels to predict (1) annual average heather utilisation, (2) spatial variation in heather utilisation (higher near the edge of grass patches) and (3) competition between heather and grass. Here we compare the predicted heather utilisation and vegetation dynamics of the spatial model, relative to those of a non-spatial model. The spatial model resulted in a reduced loss of heather cover for a given sheep stocking rate. The model demonstrates how spatial interactions between large herbivores and their forage drive vegetation dynamics, leading to changes in community structure and composition. Indeed, omitting spatial effects in grazing models may lead to inaccurate predictions. We have shown that ecosystem modelling, based around an iterative dialogue between developers and experienced researchers, has the potential to make a substantial contribution towards the conservation and management of vulnerable landscapes. Combining modelling with experimental studies will facilitate progress towards understanding long-term vegetation/herbivore dynamics.
Journal of Applied Ecology | 2016
Job Aben; Greta Bocedi; Stephen C. F. Palmer; Petri Pellikka; Diederik Strubbe; Caspar A. Hallmann; Justin M. J. Travis; Luc Lens; Erik Matthysen
Summary As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling. Here, we use a novel, individual‐based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well‐studied forest bird species. The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches. Synthesis and applications. We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.
Parasitology | 2009
E. J. Watts; Stephen C. F. Palmer; Alan S. Bowman; R. J. Irvine; A. Smith; Justin M. J. Travis
Many vector-borne pathogens whose primary vectors are generalists, such as Ixodid ticks, can infect a wide range of host species and are often zoonotic. Understanding their transmission dynamics is important for the development of disease management programmes. Models exist to describe the transmission dynamics of such diseases, but are necessarily simplistic and generally limited by knowledge of vector population dynamics. They are typically deterministic SIR-type models, which predict disease dynamics in a single, non-spatial, closed patch. Here we explore the limitations of such a model of louping-ill virus dynamics by challenging it with novel field data. The model was only partially successful in predicting Ixodes ricinus density and louping-ill virus prevalence at 6 Scottish sites. We extend the existing multi-host model by forming a two-patch model, incorporating the impact of roaming hosts. This demonstrates that host movement may account for some of the discrepancies between the original model and empirical data. We conclude that insights into the dynamics of multi-host vector-borne pathogens can be gained by using a simple two-patch model. Potential improvements to the model, incorporating aspects of spatial and temporal heterogeneity, are outlined.
Archive | 2016
Job Aben; Greta Bocedi; Stephen C. F. Palmer; Petri Pellikka; Diederik Strubbe; Caspar A. Hallmann; Justin M. J. Travis; Luc Lens; Erik Matthysen
Summary As biodiversity hotspots are often characterized by high human population densities, implementation of conservation management practices that focus only on the protection and enlargement of pristine habitats is potentially unrealistic. An alternative approach to curb species extinction risk involves improving connectivity among existing habitat patches. However, evaluation of spatially explicit management strategies is challenging, as predictive models must account for the process of dispersal, which is difficult in terms of both empirical data collection and modelling. Here, we use a novel, individual‐based modelling platform that couples demographic and mechanistic dispersal models to evaluate the effectiveness of realistic management scenarios tailored to conserve forest birds in a highly fragmented biodiversity hotspot. Scenario performance is evaluated based on the spatial population dynamics of a well‐studied forest bird species. The largest population increase was predicted to occur under scenarios increasing habitat area. However, the effectiveness was sensitive to spatial planning. Compared to adding one large patch to the habitat network, adding several small patches yielded mixed benefits: although overall population sizes increased, specific newly created patches acted as dispersal sinks, which compromised population persistence in some existing patches. Increasing matrix connectivity by the creation of stepping stones is likely to result in enhanced dispersal success and occupancy of smaller patches. Synthesis and applications. We show that the effectiveness of spatial management is strongly driven by patterns of individual dispersal across landscapes. For species conservation planning, we advocate the use of models that incorporate adequate realism in demography and, particularly, in dispersal behaviours.
PLOS ONE | 2013
Justin M. J. Travis; Stephen C. F. Palmer; Steven Coyne; Alexandre Millon; Xavier Lambin
The eco-evolutionary dynamics of dispersal are recognised as key in determining the responses of populations to environmental changes. Here, by developing a novel modelling approach, we show that predators are likely to have evolved to emigrate more often and become more selective over their destination patch when their prey species exhibit spatio-temporally complex dynamics. We additionally demonstrate that the cost of dispersal can vary substantially across space and time. Perhaps as a consequence of current environmental change, many key prey species are currently exhibiting major shifts in their spatio-temporal dynamics. By exploring similar shifts in silico, we predict that predator populations will be most vulnerable when prey dynamics shift from stable to complex. The more sophisticated dispersal rules, and greater variance therein, that evolve under complex dynamics will enable persistence across a broader range of prey dynamics than the rules which evolve under relatively stable prey conditions.
Ecological Informatics | 2015
Nicholas W. Synes; Kevin Watts; Stephen C. F. Palmer; Greta Bocedi; Kamil A. Bartoń; Patrick E. Osborne; Justin M. J. Travis
An individual-based model of animal dispersal and population dynamics was used to test the effects of different climate change adaptation strategies on species range shifting ability, namely the improvement of existing habitat, restoration of low quality habitat and creation of new habitat. These strategies were implemented on a landscape typical of fragmentation in the United Kingdom using spatial rules to differentiate between the allocation of strategies adjacent to or away from existing habitat patches. The total area being managed in the landscape was set at realistic levels based on recent habitat management trends. Eight species were parameterised to broadly represent different stage structure, population densities and modes of dispersal. Simulations were initialised with the species occupying 20% of the landscape and run for 100 years. As would be expected for a range of real taxa, range shifting abilities were dramatically different. This translated into large differences in their responses to the adaptation strategies. With conservative (0.5%) estimates of the area prescribed for climate change adaptation, few species display noticeable improvements in their range shifting, demonstrating the need for greater investment in future adaptation. With a larger (1%) prescribed area, greater range shifting improvements were found, although results were still species-specific. It was found that increasing the size of small existing habitat patches was the best way to promote range shifting, and that the creation of new stepping stone features, whilst beneficial to some species, did not have such broad effect across different species.