Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen C. Harmer is active.

Publication


Featured researches published by Stephen C. Harmer.


Journal of Biological Chemistry | 2011

Characterization of a Binding Site for Anionic Phospholipids on KCNQ1

Alison Thomas; Stephen C. Harmer; Tapsi Khambra; Andrew Tinker

The KCNQ family of potassium channels underlie a repolarizing K+ current in the heart and the M-current in neurones. The assembly of KCNQ1 with KCNE1 generates the delayed rectifier current IKs in the heart. Characteristically these channels are regulated via Gq/11-coupled receptors and the inhibition seen after phospholipase C activation is now thought to occur from membrane phosphatidylinositol (4,5)-bisphosphate (PIP2) depletion. It is not clear how KCNQ1 recognizes PIP2 and specifically which residues in the channel complex are important. Using biochemical techniques we identify a cluster of basic residues namely, Lys-354, Lys-358, Arg-360, and Lys-362, in the proximal C terminus as being involved in binding anionic phospholipids. The mutation of specific residues in combination, to alanine leads to the loss of binding to phosphoinositides. Functionally, the introduction of these mutations into KCNQ1 leads to shifts in the voltage dependence of channel activation toward depolarized potentials and reductions in current density. Additionally, the biophysical effects of the charge neutralizing mutations, which disrupt phosphoinositide binding, mirror the effects we see on channel function when we deplete cellular PIP2 levels through activation of a Gq/11-coupled receptor. Conversely, the addition of diC8-PIP2 to the wild-type channel, but not a PIP2 binding-deficient mutant, acts to shift the voltage dependence of channel activation toward hyperpolarized potentials and increase current density. In conclusion, we use a combined biochemical and functional approach to identify a cluster of basic residues important for the binding and action of anionic phospholipids on the KCNQ1/KCNE1 complex.


American Journal of Physiology-cell Physiology | 2010

Mechanisms of disease pathogenesis in long QT syndrome type 5.

Stephen C. Harmer; Andrew J. Wilson; Robert Aldridge; Andrew Tinker

KCNE1 associates with the pore-forming alpha-subunit KCNQ1 to generate the slow (I(Ks)) current in cardiac myocytes. Mutations in either KCNQ1 or KCNE1 can alter the biophysical properties of I(Ks) and mutations in KCNE1 underlie cases of long QT syndrome type 5 (LQT5). We previously investigated a mutation in KCNE1, T58P/L59P, which causes severe attenuation of I(Ks). However, how T58P/L59P acts to disrupt I(Ks) has not been determined. In this study, we investigate and compare the effects of T58P/L59P with three other LQT5 mutations (G52R, S74L, and R98W) on the biophysical properties of the current, trafficking of KCNQ1, and assembly of the I(Ks) channel. G52R and T58P/L59P produce currents that lack the kinetic behavior of I(Ks). In contrast, S74L and R98W both produce I(Ks)-like currents but with rightward shifted voltage dependence of activation. All of the LQT5 mutants express protein robustly, and T58P/L59P and R98W cause modest, but significant, defects in the trafficking of KCNQ1. Despite defects in trafficking, in the presence of KCNQ1, T58P/L59P and the other LQT5 mutants are present at the plasma membrane. Interestingly, in comparison to KCNE1 and the other LQT5 mutants, T58P/L59P associates only weakly with KCNQ1. In conclusion, we identify the disease mechanisms for each mutation and reveal that T58P/L59P causes disease through a novel mechanism that involves defective I(Ks) complex assembly.


Europace | 2016

Human-based approaches to pharmacology and cardiology: an interdisciplinary and intersectorial workshop

Blanca Rodriguez; Annamaria Carusi; Najah Abi-Gerges; Rina Ariga; Oliver J. Britton; Gil Bub; Alfonso Bueno-Orovio; Rebecca A.B. Burton; Valentina Carapella; Louie Cardone-Noott; Matthew J. Daniels; Mark Davies; Sara Dutta; Andre Ghetti; Vicente Grau; Stephen C. Harmer; Ivan Kopljar; Pier D. Lambiase; Hua Rong Lu; Aurore Lyon; Ana Mincholé; Anna Muszkiewicz; Julien Oster; Michelangelo Paci; Elisa Passini; Stefano Severi; Peter Taggart; Andrew Tinker; Jean-Pierre Valentin; András Varró

Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting.


Biochemical Journal | 2012

Readthrough of long-QT syndrome type 1 nonsense mutations rescues function but alters the biophysical properties of the channel

Stephen C. Harmer; Jagdeep S. Mohal; Duncan Kemp; Andrew Tinker

The nonsense mutations R518X-KCNQ1 and Q530X-KCNQ1 cause LQT1 (long-QT syndrome type 1) and result in a complete loss of I(Ks) channel function. In the present study we attempted to rescue the function of these mutants, in HEK (human embryonic kidney)-293 cells, by promoting readthrough of their PTCs (premature termination codons) using the pharmacological agents G-418, gentamicin and PTC124. Gentamicin and G-418 acted to promote full-length channel protein expression from R518X at 100 μM and from Q530X at 1 mM. In contrast, PTC124 did not, at any dose tested, induce readthrough of either mutant. G-418 (1 mM) treatment also acted to significantly (P<0.05) increase current density and peak-tail current density, at +80 mV for R518X, but not Q530X, to 58±11% and 82±17% of the wild-type level respectively. However, the biophysical properties of the currents produced from R518X, while similar, were not identical with wild-type as the voltage-dependence of activation was significantly (P<0.05) shifted by +25 mV. Overall, these findings indicate that although functional rescue of LQT1 nonsense mutations is possible, it is dependent on the degree of readthrough achieved and the effect on channel function of the amino acid substituted for the PTC. Such considerations will determine the success of future therapies.


Journal of Biological Chemistry | 2010

Direct Observation of Individual KCNQ1 Potassium Channels Reveals Their Distinctive Diffusive Behavior

Gregory I. Mashanov; Muriel Nobles; Stephen C. Harmer; Justin E. Molloy; Andrew Tinker

We have directly observed the trafficking and fusion of ion channel containing vesicles and monitored the release of individual ion channels at the plasma membrane of live mammalian cells using total internal reflection fluorescence microscopy. Proteins were fused in-frame with green or red fluorescent proteins and expressed at low level in HL-1 and HEK293 cells. Dual color imaging revealed that vesicle trafficking involved motorized movement along microtubules followed by stalling, fusion, and subsequent release of individual ion channels at the plasma membrane. We found that KCNQ1-KCNE1 complexes were released in batches of about 5 molecules per vesicle. To elucidate the properties of ion channel complexes at the cell membrane we tracked the movement of individual molecules and compared the diffusive behavior of two types of potassium channel complex (KCNQ1-KCNE1 and Kir6.2-SUR2A) to that of a G-protein coupled receptor, the A1 adenosine receptor. Plots of mean squared displacement against time intervals showed that mobility depended on channel type, cell type, and temperature. Analysis of the mobility of wild type KCNQ1-KCNE1 complexes showed the existence of a significant immobile subpopulation and also a significant number of molecules that demonstrated periodic stalling of diffusive movements. This behavior was enhanced in cells treated with jasplakinolide and was abrogated in a C-terminal truncated form (KCNQ1(R518X)-KCNE1) of the protein. This mutant has been identified in patients with the long QT syndrome. We propose that KCNQ1-KCNE1 complexes interact intermittently with the actin cytoskeleton via the C-terminal region and this interaction may have a functional role.


Human Molecular Genetics | 2015

Molecular mechanisms of congenital hyperinsulinism due to autosomal dominant mutations in ABCC8

Azizun Nessa; Qadeer Aziz; Alison Thomas; Stephen C. Harmer; Andrew Tinker; Khalid Hussain

Congenital Hyperinsulinism (CHI) is a rare heterogeneous disease characterized by unregulated insulin secretion. Dominant mutations in ABCC8 causing medically unresponsive CHI have been reported; however, the molecular mechanisms are not clear. The molecular basis of medically unresponsive CHI due to dominant ABCC8 mutations has been studied in 10 patients, who were medically unresponsive to diazoxide (DZX), and nine of whom required a near-total pancreatectomy, and one partial pancreatectomy. DNA sequencing revealed seven dominant inactivating heterozygous missense mutations in ABCC8, including one novel and six previously reported but uncharacterized mutations. Two groups of mutations with different cellular mechanisms were characterized. Mutations in the transmembrane domain (TMD) were more responsive to channel activators such as DZX, MgADP and metabolic inhibition. The trafficking analysis has shown that nucleotide-binding domain two (NBD2) mutations are not retained in the endoplasmic reticulum (ER) and are present on the membrane. However, the TMD mutations were retained in the ER. D1506E was the most severe SUR1-NBD2 mutation. Homologous expression of D1506E revealed a near absence of KATP currents in the presence of DZX and intracellular MgADP. Heterozygous expression of D1506E showed a strong dominant-negative effect on SUR1\Kir6.2 currents. Overall, we define two groups of mutation with different cellular mechanisms. In the first group, channel complexes with mutations in NBD2 of SUR1 traffic normally but are unable to be activated by MgADP. In the second group, channels mutations in the TMD of SUR1 are retained in the ER and have variable functional impairment.


Cell Reports | 2016

GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway

Hidekazu Ishida; Rie Saba; Ioannis Kokkinopoulos; Masakazu Hashimoto; Osamu Yamaguchi; Sonja Nowotschin; Manabu Shiraishi; Prashant Ruchaya; Duncan Miller; Stephen C. Harmer; Ariel Poliandri; Shigetoyo Kogaki; Yasushi Sakata; Leo Dunkel; Andrew Tinker; Anna-Katerina Hadjantonakis; Yoshiki Sawa; Hiroshi Sasaki; Keiichi Ozono; Ken Suzuki; Kenta Yashiro

Summary A surface marker that distinctly identifies cardiac progenitors (CPs) is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2), specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.


Biological Chemistry | 2016

The impact of recent advances in genetics in understanding disease mechanisms underlying the long QT syndromes.

Stephen C. Harmer; Andrew Tinker

Abstract Long QT syndrome refers to a characteristic abnormality of the electrocardiogram and it is associated with a form of ventricular tachycardia known as torsade-de-pointes and sudden arrhythmic death. It can occur as part of a hereditary syndrome or can be acquired usually because of drug administration. Here we review recent genetic, molecular and cellular discoveries and outline how they have furthered our understanding of this disease. Specifically we focus on compound mutations, genome wide association studies of QT interval, modifier genes and the therapeutic implications of this recent work.


European Heart Journal | 2018

CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy

Diogo Mosqueira; Ingra Mannhardt; Jamie R. Bhagwan; Katarzyna Lis-Slimak; Puspita Katili; Elizabeth Scott; Mustafa Hassan; Maksymilian Prondzynski; Stephen C. Harmer; Andrew Tinker; James G.W. Smith; Lucie Carrier; Philip M. Williams; Daniel J. Gaffney; Thomas Eschenhagen; Arne Hansen; Chris Denning

Abstract Aims Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-β-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-βMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient βMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms.


Pharmacology & Therapeutics | 2017

The control of cardiac ventricular excitability by autonomic pathways

Malcolm Finlay; Stephen C. Harmer; Andrew Tinker

Central to the genesis of ventricular cardiac arrhythmia are variations in determinants of excitability. These involve individual ionic channels and transporters in cardiac myocytes but also tissue factors such as variable conduction of the excitation wave, fibrosis and source-sink mismatch. It is also known that in certain diseases and particularly the channelopathies critical events occur with specific stressors. For example, in hereditary long QT syndrome due to mutations in KCNQ1 arrhythmic episodes are provoked by exercise and in particular swimming. Thus not only is the static substrate important but also how this is modified by dynamic signalling events associated with common physiological responses. In this review, we examine the regulation of ventricular excitability by signalling pathways from a cellular and tissue perspective in an effort to identify key processes, effectors and potential therapeutic approaches. We specifically focus on the autonomic nervous system and related signalling pathways.

Collaboration


Dive into the Stephen C. Harmer's collaboration.

Top Co-Authors

Avatar

Andrew Tinker

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Alison Thomas

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ariel Poliandri

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Duncan Miller

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Jagdeep S. Mohal

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Leo Dunkel

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Muriel Nobles

University College London

View shared research outputs
Top Co-Authors

Avatar

Qadeer Aziz

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge