Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen C. Webb is active.

Publication


Featured researches published by Stephen C. Webb.


Journal of Parasitology | 1997

Genetic and ecological data on the Anisakis simplex complex, with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae).

Simonetta Mattiucci; Giuseppe Nascetti; R. Cianchi; L. Paggi; P. Arduino; L. Margolis; J. Brattey; Stephen C. Webb; S. D'Amelio; P. Orecchia; L. Bullini

Isozyme analysis at 24 loci was carried out on anisakid nematodes of the Anisakis simplex complex, recovered from various intermediate/paratenic (squid, fish) and definitive (marine mammals) hosts from various parts of the world. A number of samples were found to belong to A. simplex sensu stricto and Anisakis pegreffii, widely extending the geographic ranges and the number of hosts of these 2 species. In addition, a new distinct gene pool was detected, showing different alleles with respect to A. simplex s. str and A. pegreffii at 5 diagnostic loci (99% level). Samples with this gene pool were assigned to a new species, provisionally labeled A. simplex C. Reproductive isolation between A. simplex C and the other 2 Anisakis species was directly assessed by the lack of hybrid and recombinant genotypes in mixed samples from sympatric areas, i.e., Pacific Canada for A. simplex C+A. simplex s. str., South Africa and New Zealand for A. simplex C+A. pegreffii, even when such samples were recovered from the same individual host. Similar levels of genetic divergence were observed among the three species (DNei from 0.36 to 0.45). At the intraspecific level, Canadian Pacific and Austral populations of A. simplex C were found to be genetically rather differentiated from one another (average DNei = 0.08), contrasting with the remarkable genetic homogeneity detected within both A. simplex s. str. and A. pegreffii (average DNei about 0.01). Accordingly, a lower amount of gene flow was estimated within A. simplex C (Nm = 1.6) than within the other 2 species (Nm = 5.4 and 17.7, respectively). Anisakis simplex C showed the highest average values of genetic variability with respect to both A. simplex s. str. and A. pegreffii, e.g., expected mean heterozygosity. Hr = 0.23, 0.16, and 0.11, respectively, in the 3 species. Data on geographic distribution and hosts of the 3 members so far detected in the A. simplex complex are given. Their ecological niche is markedly differentiated, with a low proportion of hosts shared. Intermediate and definitive hosts of A. simplex s. str. and A. pegreffii appear to belong to distinct food webs, benthodemersal, and pelagic, respectively; this would lead to different transmission pathways for the parasites.


Journal of Parasitology | 2006

GENETIC RELATIONSHIPS AMONG ANISAKIS SPECIES (NEMATODA: ANISAKIDAE) INFERRED FROM MITOCHONDRIAL COX2 SEQUENCES, AND COMPARISON WITH ALLOZYME DATA

Alice Valentini; Simonetta Mattiucci; Paola Bondanelli; Stephen C. Webb; Antonio A. Mignucci-Giannone; Marlene M. Colom-Llavina; Giuseppe Nascetti

The genetic relationships among 9 taxa of Anisakis Dujardin, 1845 (A. simplex (sensu stricto), A. pegreffii, A. simplex C., A. typica, A. ziphidarum, A. physeteris, A. brevispiculata, A. paggiae, and Anisakis sp.) were inferred from sequence analysis (629 bp) of the mitochondrial cox2 gene. Genetic divergence among the considered taxa, estimated by p-distance, ranged from p = 0.055, between sibling species of the A. simplex complex, to p = 0.12, between morphologically differentiated species, i.e., A. ziphidarum and A. typica. The highest level was detected when comparing A. physeteris, A. brevispiculata, and A. paggiae versus A. simplex complex (on average p = 0.13) or versus A. typica (on average p = 0.14). Sequence data from the newly identified Anisakis sp. poorly aligned with other Anisakis species but was most similar to A. ziphidarum (p = 0.08). Phylogenetic analyses based upon Parsimony and Bayesian Inference, as well as phenetic analysis based upon Neighbor-Joining p-distance values, generated similar tree topologies, each well supported at major nodes. All analyses delineated two main claides, the first encompassing A. physeteris, A. brevispiculata, and A. paggiae as a sister group to all the remaining species, and the second comprising the species of the A. simplex complex (A. simplex (s.s.), A. pegreffii and A. simplex C), A. typica, A. ziphidarum, and Anisakis sp. In general, mtDNA-based tree topologies showed high congruence with those generated from nuclear data sets (19 enzyme-loci) and with morphological data delineating adult and larval stages of the Anisakis spp.; however, precise positioning of A. typica and A. ziphidarum remain poorly resolved, though they consistently clustered in the same clade as Anisakis sp. and the A. simplex complex. Comparison of anisakid data with those currently available for their cetacean-definitive hosts suggests parallelism between host and parasite phylogenetic tree topologies.


Journal of Virology | 2012

Analysis of Clinical Ostreid Herpesvirus 1 (Malacoherpesviridae) Specimens by Sequencing Amplified Fragments from Three Virus Genome Areas

Tristan Renault; Pierrick Moreau; Nicole Faury; Jean-François Pepin; Amélie Segarra; Stephen C. Webb

ABSTRACT Although there are a number of ostreid herpesvirus 1 (OsHV-1) variants, it is expected that the true diversity of this virus will be known only after the analysis of significantly more data. To this end, we analyzed 72 OsHV-1 “specimens” collected mainly in France over an 18-year period, from 1993 to 2010. Additional samples were also collected in Ireland, the United States, China, Japan, and New Zealand. Three virus genome regions (open reading frame 4 [ORF4], ORF35, -36, -37, and -38, and ORF42 and -43) were selected for PCR analysis and sequencing. Although ORF4 appeared to be the most polymorphic genome area, distinguishing several genogroups, ORF35, -36, -37, and -38 and ORF42 and -43 also showed variations useful in grouping subpopulations of this virus.


Systematic Parasitology | 2005

Evidence for a new species of Anisakis Dujardin, 1845: morphological description and genetic relationships between congeners (Nematoda: Anisakidae)

Simonetta Mattiucci; Giuseppe Nascetti; Murray D. Dailey; Stephen C. Webb; Nélio B. Barros; R. Cianchi; Luciano Bullini

In the present study, a new biological species of Anisakis Dujardin, 1845, was detected in Kogia breviceps and K. sima from West Atlantic waters (coast of Florida) on the basis of 19 (nuclear) structural genes studied by multilocus allozyme electrophoresis. Fixed allele differences at 11 enzyme loci were found between specimens of both adults and larvae of the new species and the other Anisakis spp. tested. Reproductive isolation from A. brevispiculata Dollfus, 1968 was demonstrated by the lack of hybrid or recombinant genotypes in mixed infections in K. breviceps. Genetic distance of the new species from its closest relative, A. brevispiculata, was DNei=0.79. The new species is morphologically different from the other species which have been genetically characterised and from the other Anisakis retained by Davey (1971) as valid or as species inquirendae: the name of Anisakis paggiae n. sp. is proposed for the new taxon. Anisakis Type II larvae (sensu Berland, 1961) from the European hake Merluccius merluccius in the northeastern Atlantic Ocean (Galician coast) and from the scabbard fish Aphanopus carbo in Central Atlantic waters (off Madeira), were identified as A. paggiae n. sp. Its genetic relationships with respect to the seven species previously characterised (A. simplex (Rudolphi, 1809) sensu stricto), A. pegreffii Campana-Rouget & Biocca, 1955, A. simplex, (A. typica (Diesing, 1860), A. ziphidarum Paggi et al., 1998, A. physeteris Baylis, 1923 and A. brevispiculata) were also inferred. Overall, a low genetic identity was detected at allozyme level between the eight Anisakis species. Interspecific genetic identity ranged from INei=0.68, between the sibling species of the A. simplex complex, to INei=0.00 (no alleles shared at the considered loci) when A. physeteris, A. brevispiculata and the new species were compared with the other species of the genus. Concordant topologies were obtained using both UPGMA and NJ tree analyses for the considered species. In both analyses, A. paggiae n. sp. clustered with A. brevispiculata. They also indciated two main clades, the first including A. physeteris, A. brevispiculata and A. paggiae n. sp., the second containing all of the remaining species (i.e. A. simplex (s.s.), A. pegreffii, A. simplex, A. typica and A. ziphidarum). A deep separation between these two main Anisakis clades, also supported by high bootstrap values at the major nodes, was apparent. This is also supported by differences in adult and larval morphology, as well as with respect to their main definitive hosts. A morphological key for distinguishing adult A. paggiae n. sp., A. physeteris and A. brevispiculata is presented. Allozyme markers for the identification of any life-history stage of the Anisakis spp. so far studied, as well as ecological data on their definitive host preferences and geographical distribution, are updated.


Journal of Parasitology | 2014

Genetic and Morphological Approaches Distinguish the Three Sibling Species of the Anisakis simplex Species Complex, with a Species Designation as Anisakis berlandi n. sp. for A. simplex sp. C (Nematoda: Anisakidae)

Simonetta Mattiucci; Paolo Cipriani; Stephen C. Webb; Michela Paoletti; Federica Marcer; Bruno Bellisario; David I. Gibson; Giuseppe Nascetti

Abstract:  Numerous specimens of the 3 sibling species of the Anisakis simplex species complex (A. pegreffii, A. simplex (senso stricto)), and A. simplex sp. C) recovered from cetacean species stranded within the known geographical ranges of these nematodes were studied morphologically and genetically. The genetic characterization was performed on diagnostic allozymes and sequences analysis of nuclear (internal transcribed spacer [ITS] of ribosomal [r]DNA) and mitochondrial (mitochondrial [mt]DNA cox2 and rrnS) genes. These markers showed (1) the occurrence of sympatry of the 2 sibling species A. pegreffii and A. simplex sp. C in the same individual host, the pilot whale, Globicephala melas Traill, from New Zealand waters; (2) the identification of specimens of A. pegreffii in the striped dolphin, Stenella coeruleoalba (Meyen), from the Mediterranean Sea; and (3) the presence of A. simplex (s.s.) in the pilot whale and the minke whale, Balaenoptera acutorostrata Lacépède, from the northeastern Atlantic waters. No F1 hybrids were detected among the 3 species using the nuclear markers. The phylogenetic inference, obtained by maximum parsimony (MP) analysis of separate nuclear (ITS rDNA region), combined mitochondrial (mtDNA cox2 and rrnS) sequences datasets, and by concatenated analysis obtained at both MP and Bayesian inference (BI) of the sequences datasets at the 3 studied genes, resulted in a similar topology. They were congruent in depicting the existence of the 3 species as distinct phylogenetic lineages, and the tree topologies support the finding that A. simplex (s.s.), A. pegreffii, and A. berlandi n. sp. (=A. simplex sp. C) represent a monophyletic group. The morphological and morphometric analyses revealed the presence of morphological features that differed among the 3 biological species. Morphological analysis using principal component analysis, and Procrustes analysis, combining morphological and genetic datasets, showed the specimens clustering into 3 well-defined groups. Nomenclatural designation and formal description are given for A. simplex species C: the name Anisakis berlandi n. sp. is proposed. Key morphological diagnostic traits are as follows between A. berlandi n. sp. and A. simplex (s.s.): ventriculus length, tail shape, tail length/total body length ratio, and left spicule length/total body length ratio; between A. berlandi n. sp. and A. pegreffii: ventriculus length and plectane 1 width/plectane 3 width ratio; and between A. simplex (s.s.) and A. pegreffii: ventriculus length, left and right spicule length/total body length ratios, and tail length/total body length ratio. Ecological data pertaining to the geographical ranges and host distribution of the 3 species are updated.


Cryobiology | 2007

Towards cryopreservation of Greenshell mussel (Perna canaliculus) oocytes.

Serean L. Adams; H. Robin Tervit; Lindsay T. McGowan; John F. Smith; Rodney D. Roberts; Liliana Salinas-Flores; Samantha L. Gale; Stephen C. Webb; Steven F. Mullen; John K. Critser

Cryopreservation is a powerful tool for selective breeding in aquaculture as it enables genetic material from selected stock to be stored and crossed at will. The aim of this study was to develop a method for cryopreserving oocytes of the Greenshelltrade mark mussel (Perna canaliculus), New Zealands main aquaculture species. The ability of oocytes to be fertilized post-thawing was used as the criterion for success in initial experiments and then subsequently, the ability of frozen oocytes to develop further to D-stage larvae was assessed. Ethylene glycol, propylene glycol, dimethyl sulphoxide and glycerol were evaluated at a range of concentrations with and without the addition of 0.2M trehalose using post-thaw fertilization as the endpoint. Ethylene glycol was most effective, particularly when used in combination with trehalose. A more detailed investigation revealed that ethylene glycol at 9% or 10% in the presence of 0.2-0.4M trehalose afforded the best protection. In experiments varying sperm to egg ratio and egg density in post-thaw fertilization procedures, D-larval yield averaged less than 1%. Following these results, a detailed experiment was conducted to determine the damaging steps in the cryopreservation process. Fertilization losses occurred at each step whereas D-larval yield approximately halved following CPA addition and was almost zero following cooling to -10 degrees C. Cryomicroscopy studies and fertilization results suggest that the inability of oocytes to develop to D-larvae stage after cooling to -10 degrees C and beyond are most likely related to some form of chilling injury rather than extracellular ice triggering intracellular ice formation. Further research is needed to determine the causes of this injury and to reduce CPA toxicity and/or osmotic effects.


Parasitology | 2016

No more time to stay ‘single’ in the detection of Anisakis pegreffii, A. simplex (s. s.) and hybridization events between them: a multi-marker nuclear genotyping approach

Simonetta Mattiucci; V. Acerra; Michela Paoletti; Paolo Cipriani; Arne Levsen; Stephen C. Webb; D. Canestrelli; Giuseppe Nascetti

SUMMARY A multi-marker nuclear genotyping approach was performed on larval and adult specimens of Anisakis spp. (N = 689) collected from fish and cetaceans in allopatric and sympatric areas of the two species Anisakis pegreffii and Anisakis simplex (s. s.), in order to: (1) identify specimens belonging to the parental taxa by using nuclear markers (allozymes loci) and sequence analysis of a new diagnostic nuclear DNA locus (i.e. partial sequence of the EF1 α−1 nDNA region) and (2) recognize hybrid categories. According to the Bayesian clustering algorithms, based on those markers, most of the individuals (N = 678) were identified as the parental species [i.e. A. pegreffii or A. simplex (s. s.)], whereas a smaller portion (N = 11) were recognized as F1 hybrids. Discordant results were obtained when using the polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLPs) of the internal transcribed spacer (ITS) ribosomal DNA (rDNA) on the same specimens, which indicated the occurrence of a large number of ‘hybrids’ both in sympatry and allopatry. These findings raise the question of possible misidentification of specimens belonging to the two parental Anisakis and their hybrid categories derived from the application of that single marker (i.e. PCR–RFLPs analysis of the ITS of rDNA). Finally, Bayesian clustering, using allozymes and EF1 α−1 nDNA markers, has demonstrated that hybridization between A. pegreffii and A. simplex (s. s.) is a contemporary phenomenon in sympatric areas, while no introgressive hybridization takes place between the two species.


Archive | 2017

Inventorying Biodiversity of Anisakid Nematodes from the Austral Region: A Hotspot of Genetic Diversity?

Simonetta Mattiucci; Michela Paoletti; Paolo Cipriani; Stephen C. Webb; Juan T. Timi; Giuseppe Nascetti

Inventorying of anisakid nematode biodiversity is the discovering, surveying, quantifying and mapping of species, populations and their genetic diversity and variability. This aim, however, is compromised if discrimination of anisakid taxa relies solely on morphological features. Therefore, the accurate detection and delimitation of cryptic anisakid species requires molecular-based assessments. This, in turn, permits elucidation of patterns and process in their evolution and ecology, including biogeography, host-parasite association and co-evolution. In addition, a true picture of anisakids and their genetic diversity facilitates understanding of their temporal and spatial distribution also related to their hosts demographic changes and marine ecosystem food webs.


Diseases of Aquatic Organisms | 2016

Bonamia ostreae in the New Zealand oyster Ostrea chilensis: a new host and geographic record for this haplosporidian parasite

Henry S. Lane; Stephen C. Webb; John Duncan

Previous reports of the haplosporidian parasite Bonamia ostreae have been restricted to the Northern Hemisphere, including Europe, and both eastern and western North America. This species is reported for the first time in New Zealand infecting the flat oyster Ostrea chilensis. Histological examination of 149 adult oysters identified 119 (79.9%) infected with Bonamia microcells. Bonamia generic PCR of several oysters followed by DNA sequencing of a 300 bp portion of the 18S rDNA gene produced a 100% match with that of B. ostreae. All DNA-sequenced products also produced a B. ostreae PCR-restriction fragment length polymorphism (PCR-RFLP) profile. Bonamia species-specific PCRs further detected single infections of B. exitiosa (2.7%), B. ostreae (40.3%), and concurrent infections (53.7%) with these 2 Bonamia species identifying overall a Bonamia prevalence of 96.6%. Detailed histological inspection revealed 2 microcell types. An infection identified by PCR as B. ostreae histologically presented small microcells (mean ± SE diameter = 1.28 ± 0.16 µm, range = 0.9-2 µm, n = 60) commonly with eccentric nuclei. A B. exitiosa infection exhibited larger microcells (mean ± SE diameter = 2.12 ± 0.27 µm, range = 1.5-4 µm, n = 60) with more concentric nuclei. Concurrent infections of both Bonamia species, as identified by PCR, exhibited both types of microcells. DNA barcoding of the B. ostreae-infected oyster host confirmed the identification as O. chilensis. A suite of other parasites that accompany O. chilensis are reported here for the first time in mixed infection with B. ostreae including apicomplexan X (76.5%), Microsporidium rapuae (0.7%) and Bucephalus longicornutus (30.2%).


Diseases of Aquatic Organisms | 2018

PCR test to specifically detect the apicomplexan ‘X’ (APX) parasite found in flat oysters Ostrea chilensis in New Zealand

Nt Suong; Jc Banks; Stephen C. Webb; Andrew Jeffs; Kc Wakeman; Andrew E. Fidler

Described here is a polymerase chain reaction (PCR) test to detect the apicomplexan-X (APX) parasite of a flat oyster species, Ostrea chilensis, endemic to New Zealand. The test primers target sequences in the in situ hybridisation probes identified to bind specifically to APX 18S rRNA and amplify a 723 bp DNA product. The test did not amplify 18S rRNA gene sequences of other apicomplexan species, including Toxoplasma gondii, Neospora caninum, Selenidium spp., Cephaloidophorida spp., Lecudina spp. and Thiriotia sp. Of 73 flat oysters identified by histology to be infected with APX at different severities, 69 (95%) tested PCR-positive. Failure to amplify an internal control indicated the presence of PCR inhibitors in the 4 PCR-negative samples. The high analytical sensitivity, specificity and speed of the PCR test should make it a useful tool for detecting APX.

Collaboration


Dive into the Stephen C. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Paoletti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paolo Cipriani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge