Stephen Cina
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen Cina.
Human Brain Mapping | 2013
Vitaly Napadow; Jeungchan Lee; Jieun Kim; Stephen Cina; Yumi Maeda; Riccardo Barbieri; Richard E. Harris; Norman W. Kettner; Kyungmo Park
Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event‐related fMRI (er‐fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid‐cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR−) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter‐subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture‐induced HR− was associated with greater DMN deactivation. Between‐event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR−. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR−, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er‐fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. Hum Brain Mapp 34:2592–2606, 2013.
Brain | 2014
Yumi Maeda; Norman W. Kettner; Jameson K. Holden; Jeungchan Lee; Jieun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Jaehyun Im; Alexandra Libby; Pia Mezzacappa; Leslie R. Morse; Kyungmo Park; Joseph Audette; Mark Tommerdahl; Vitaly Napadow
Carpal tunnel syndrome, a median nerve entrapment neuropathy, is characterized by sensorimotor deficits. Recent reports have shown that this syndrome is also characterized by functional and structural neuroplasticity in the primary somatosensory cortex of the brain. However, the linkage between this neuroplasticity and the functional deficits in carpal tunnel syndrome is unknown. Sixty-three subjects with carpal tunnel syndrome aged 20-60 years and 28 age- and sex-matched healthy control subjects were evaluated with event-related functional magnetic resonance imaging at 3 T while vibrotactile stimulation was delivered to median nerve innervated (second and third) and ulnar nerve innervated (fifth) digits. For each subject, the interdigit cortical separation distance for each digits contralateral primary somatosensory cortex representation was assessed. We also evaluated fine motor skill performance using a previously validated psychomotor performance test (maximum voluntary contraction and visuomotor pinch/release testing) and tactile discrimination capacity using a four-finger forced choice response test. These biobehavioural and clinical metrics were evaluated and correlated with the second/third interdigit cortical separation distance. Compared with healthy control subjects, subjects with carpal tunnel syndrome demonstrated reduced second/third interdigit cortical separation distance (P < 0.05) in contralateral primary somatosensory cortex, corroborating our previous preliminary multi-modal neuroimaging findings. For psychomotor performance testing, subjects with carpal tunnel syndrome demonstrated reduced maximum voluntary contraction pinch strength (P < 0.01) and a reduced number of pinch/release cycles per second (P < 0.05). Additionally, for four-finger forced-choice testing, subjects with carpal tunnel syndrome demonstrated greater response time (P < 0.05), and reduced sensory discrimination accuracy (P < 0.001) for median nerve, but not ulnar nerve, innervated digits. Moreover, the second/third interdigit cortical separation distance was negatively correlated with paraesthesia severity (r = -0.31, P < 0.05), and number of pinch/release cycles (r = -0.31, P < 0.05), and positively correlated with the second and third digit sensory discrimination accuracy (r = 0.50, P < 0.05). Therefore, reduced second/third interdigit cortical separation distance in contralateral primary somatosensory cortex was associated with worse symptomatology (particularly paraesthesia), reduced fine motor skill performance, and worse sensory discrimination accuracy for median nerve innervated digits. In conclusion, primary somatosensory cortex neuroplasticity for median nerve innervated digits in carpal tunnel syndrome is indeed maladaptive and underlies the functional deficits seen in these patients.
NeuroImage: Clinical | 2013
Yumi Maeda; Norman W. Kettner; James D. Sheehan; Jieun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Pia Mezzacappa; Leslie R. Morse; Joseph Audette; Vitaly Napadow
Objective Carpal tunnel syndrome (CTS) is a common median nerve entrapment neuropathy characterized by pain, paresthesias, diminished peripheral nerve conduction velocity (NCV) and maladaptive functional brain neuroplasticity. We evaluated structural reorganization in brain gray matter (GM) and white matter (WM) and whether such plasticity is linked to altered median nerve function in CTS. Methods We performed NCV testing, T1-weighted structural MRI, and diffusion tensor imaging (DTI) in 28 CTS and 28 age-matched healthy controls (HC). Voxel-based morphometry (VBM) contrasted regional GM volume for CTS versus HC. Significant clusters were correlated with clinical metrics and served as seeds to define associated WM tracts using DTI data and probabilistic tractography. Within these WM tracts, fractional anisotropy (FA), axial (AD) and radial (RD) diffusivity were evaluated for group differences and correlations with clinical metrics. Results For CTS subjects, GM volume was significantly reduced in contralesional S1 (hand-area), pulvinar and frontal pole. GM volume in contralesional S1 correlated with median NCV. NCV was also correlated with RD and was negatively correlated with FA within U-fiber cortico-cortical association tracts identified from the contralesional S1 VBM seed. Conclusions Our study identified clear morphometric changes in the CTS brain. This central morphometric change is likely secondary to peripheral nerve pathology and altered somatosensory afference. Enhanced axonal coherence and myelination within cortico-cortical tracts connecting primary somatosensory and motor areas may accompany peripheral nerve deafferentation. As structural plasticity was correlated with NCV and not symptomatology, the former may be a better determinant of appropriate clinical intervention for CTS, including surgery.
Evidence-based Complementary and Alternative Medicine | 2013
Yumi Maeda; Norman W. Kettner; Jeungchan Lee; Jieun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Jaehyun Im; Alexandra Libby; Pia Mezzacappa; Leslie R. Morse; Kyungmo Park; Joseph Audette; Vitaly Napadow
The linkage between brain response to acupuncture and subsequent analgesia remains poorly understood. Our aim was to evaluate this linkage in chronic pain patients with carpal tunnel syndrome (CTS). Brain response to electroacupuncture (EA) was evaluated with functional MRI. Subjects were randomized to 3 groups: (1) EA applied at local acupoints on the affected wrist (PC-7 to TW-5), (2) EA at distal acupoints (contralateral ankle, SP-6 to LV-4), and (3) sham EA at nonacupoint locations on the affected wrist. Symptom ratings were evaluated prior to and following the scan. Subjects in the local and distal groups reported reduced pain. Verum EA produced greater reduction of paresthesia compared to sham. Compared to sham EA, local EA produced greater activation in insula and S2 and greater deactivation in ipsilateral S1, while distal EA produced greater activation in S2 and deactivation in posterior cingulate cortex. Brain response to distal EA in prefrontal cortex (PFC) and brain response to verum EA in S1, SMA, and PFC were correlated with pain reduction following stimulation. Thus, while greater activation to verum acupuncture in these regions may predict subsequent analgesia, PFC activation may specifically mediate reduced pain when stimulating distal acupoints.
Brain | 2017
Yumi Maeda; Hyungjun Kim; Norman W. Kettner; Jieun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Rebecca Ong-Sutherland; Pia Mezzacappa; Alexandra Libby; Ishtiaq Mawla; Leslie R. Morse; Ted J. Kaptchuk; Joseph Audette; Vitaly Napadow
Carpal tunnel syndrome is the most common entrapment neuropathy, affecting the median nerve at the wrist. Acupuncture is a minimally-invasive and conservative therapeutic option, and while rooted in a complex practice ritual, acupuncture overlaps significantly with many conventional peripherally-focused neuromodulatory therapies. However, the neurophysiological mechanisms by which acupuncture impacts accepted subjective/psychological and objective/physiological outcomes are not well understood. Eligible patients (n = 80, 65 female, age: 49.3 ± 8.6 years) were enrolled and randomized into three intervention arms: (i) verum electro-acupuncture local to the more affected hand; (ii) verum electro-acupuncture at distal body sites, near the ankle contralesional to the more affected hand; and (iii) local sham electro-acupuncture using non-penetrating placebo needles. Acupuncture therapy was provided for 16 sessions over 8 weeks. Boston Carpal Tunnel Syndrome Questionnaire assessed pain and paraesthesia symptoms at baseline, following therapy and at 3-month follow-up. Nerve conduction studies assessing median nerve sensory latency and brain imaging data were acquired at baseline and following therapy. Functional magnetic resonance imaging assessed somatotopy in the primary somatosensory cortex using vibrotactile stimulation over three digits (2, 3 and 5). While all three acupuncture interventions reduced symptom severity, verum (local and distal) acupuncture was superior to sham in producing improvements in neurophysiological outcomes, both local to the wrist (i.e. median sensory nerve conduction latency) and in the brain (i.e. digit 2/3 cortical separation distance). Moreover, greater improvement in second/third interdigit cortical separation distance following verum acupuncture predicted sustained improvements in symptom severity at 3-month follow-up. We further explored potential differential mechanisms of local versus distal acupuncture using diffusion tensor imaging of white matter microstructure adjacent to the primary somatosensory cortex. Compared to healthy adults (n = 34, 28 female, 49.7 ± 9.9 years old), patients with carpal tunnel syndrome demonstrated increased fractional anisotropy in several regions and, for these regions we found that improvement in median nerve latency was associated with reduction of fractional anisotropy near (i) contralesional hand area following verum, but not sham, acupuncture; (ii) ipsilesional hand area following local, but not distal or sham, acupuncture; and (iii) ipsilesional leg area following distal, but not local or sham, acupuncture. As these primary somatosensory cortex subregions are distinctly targeted by local versus distal acupuncture electrostimulation, acupuncture at local versus distal sites may improve median nerve function at the wrist by somatotopically distinct neuroplasticity in the primary somatosensory cortex following therapy. Our study further suggests that improvements in primary somatosensory cortex somatotopy can predict long-term clinical outcomes for carpal tunnel syndrome.
Pain | 2016
Yumi Maeda; Norman W. Kettner; Jieun Kim; Hyungjun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Alexandra Libby; Pia Mezzacappa; Ishtiaq Mawla; Leslie R. Morse; Joseph Audette; Vitaly Napadow
Abstract Paresthesia-dominant and pain-dominant subgroups have been noted in carpal tunnel syndrome (CTS), a peripheral neuropathic disorder characterized by altered primary somatosensory/motor (S1/M1) physiology. We aimed to investigate whether brain morphometry dissociates these subgroups. Subjects with CTS were evaluated with nerve conduction studies, whereas symptom severity ratings were used to allocate subjects into paresthesia-dominant (CTS-paresthesia), pain-dominant (CTS-pain), and pain/paresthesia nondominant (not included in further analysis) subgroups. Structural brain magnetic resonance imaging data were acquired at 3T using a multiecho MPRAGE T1-weighted pulse sequence, and gray matter cortical thickness was calculated across the entire brain using validated, automated methods. CTS-paresthesia subjects demonstrated reduced median sensory nerve conduction velocity (P = 0.05) compared with CTS-pain subjects. In addition, cortical thickness in precentral and postcentral gyri (S1/M1 hand area) contralateral to the more affected hand was significantly reduced in CTS-paresthesia subgroup compared with CTS-pain subgroup. Moreover, in CTS-paresthesia subjects, precentral cortical thickness was negatively correlated with paresthesia severity (r(34) = −0.40, P = 0.016) and positively correlated with median nerve sensory velocity (r(36) = 0.51, P = 0.001), but not with pain severity. Conversely, in CTS-pain subjects, contralesional S1 (r(9) = 0.62, P = 0.042) and M1 (r(9) = 0.61, P = 0.046) cortical thickness were correlated with pain severity, but not median nerve velocity or paresthesia severity. This double dissociation in somatotopically specific S1/M1 areas suggests a neuroanatomical substrate for symptom-based CTS subgroups. Such fine-grained subgrouping of CTS may lead to improved personalized therapeutic approaches, based on superior characterization of the linkage between peripheral and central neuroplasticity.
Pain Medicine | 2017
Noah A. Zucker; Alex Tsodikov; Scott Mist; Stephen Cina; Vitaly Napadow; Richard E. Harris
ObjectivenFibromyalgia is a chronic pain condition with few effective treatments. Many fibromyalgia patients seek acupuncture for analgesia; however, its efficacy is limited and not fully understood. This may be due to heterogeneous pathologies among participants in acupuncture clinical trials. We hypothesized that pressure pain tenderness would differentially classify treatment response to verum and sham acupuncture in fibromyalgia patients.nnnDesignnBaseline pressure pain sensitivity at the thumbnail at baseline was used in linear mixed models as a modifier of differential treatment response to sham versus verum acupuncture. Similarly, needle-induced sensation was also analyzed to determine its differential effect of treatment on clinical pain.nnnMethods and PatientsnA cohort of 114 fibromyalgia patients received baseline pressure pain testing and were randomized to either verum (Nu2009=u200959) or sham (Nu2009=u200955) acupuncture. Participants received treatments from once a week to three times a week, increasing in three-week blocks for a total of 18 treatments. Clinical pain was measured on a 101-point visual analog scale, and needle sensation was measured by questionnaire throughout the trial.nnnResultsnParticipants who had higher pain pressure thresholds had greater reduction in clinical pain following verum acupuncture while participants who had lower pain pressure thresholds showed better analgesic response to sham acupuncture. Moreover, patients with lower pressure pain thresholds had exacerbated clinical pain following verum acupuncture. Similar relationships were observed for sensitivity to acupuncture needling.nnnConclusionsnThese findings suggest that acupuncture efficacy in fibromyalgia may be underestimated and a more personalized treatment for fibromyalgia may also be possible.
Medical Acupuncture | 2013
Yumi Maeda; Norman W. Kettner; Jeungchan Lee; Jieun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Jaehyun Im; Alexandra Libby; Pia Mezzacappa; Leslie R. Morse; Kyungmo Park; Joseph Audette; Vitaly Napadow
Integrative medicine research | 2015
Hyungjun Kim; Yumi Maeda; Norman W. Kettner; Jameson K. Holden; Jeungchan Lee; Jieun Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; Jaehyun Im; Alexandra Libby; Pia Mezzacappa; Leslie R. Morse; Kyungmo Park; Joseph Audette; Mark Tommerdahl; Vitaly Napadow
Journal of Acupuncture and Meridian Studies | 2018
Vitaly Napadow; Yumi Maeda; Hahn-Young Kim; Norman W. Kettner; Jinsung Kim; Stephen Cina; Cristina Malatesta; Jessica Gerber; Claire McManus; R. Ong-Sutherland; Pia Mezzacappa; Alexandra Libby; Ishtiaq Mawla; Leslie R. Morse; Ted J. Kaptchuk; Joseph Audette