Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen Cusack is active.

Publication


Featured researches published by Stephen Cusack.


Nature | 2009

The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

Alexandre Dias; Denis Bouvier; Thibaut Crépin; Andrew A. McCarthy; Darren J. Hart; Florence Baudin; Stephen Cusack; Rob W.H. Ruigrok

The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique cap-snatching mechanism. The PB2 subunit binds the 5′ cap of host pre-mRNAs, which are subsequently cleaved after 10–13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and typeu2009II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.


Cell | 2011

Structural Basis for the Activation of Innate Immune Pattern Recognition Receptor Rig-I by Viral RNA.

Eva Kowalinski; Thomas Lunardi; Andrew A. McCarthy; Jade Louber; Joanna Brunel; Boyan Grigorov; Denis Gerlier; Stephen Cusack

RIG-I is a key innate immune pattern-recognition receptor that triggers interferon expression upon detection of intracellular 5triphosphate double-stranded RNA (5ppp-dsRNA) of viral origin. RIG-I comprises N-terminal caspase activation and recruitment domains (CARDs), a DECH helicase, and a C-terminal domain (CTD). We present crystal structures of the ligand-free, autorepressed, and RNA-bound, activated states of RIG-I. Inactive RIG-I has an open conformation with the CARDs sequestered by a helical domain inserted between the two helicase moieties. ATP and dsRNA binding induce a major rearrangement to a closed conformation in which the helicase and CTD bind the blunt end 5ppp-dsRNA with perfect complementarity but incompatibly with continued CARD binding. We propose that after initial binding of 5ppp-dsRNA to the flexibly linked CTD, co-operative tight binding of ATP and RNA to the helicase domain liberates the CARDs for downstream signaling. These findings significantly advance our molecular understanding of the activation of innate immune signaling helicases.


Nature Structural & Molecular Biology | 2008

The structural basis for cap binding by influenza virus polymerase subunit PB2

Delphine Guilligay; Franck Tarendeau; Patricia Resa-Infante; Rocío Coloma; Thibaut Crépin; Peter Sehr; Joe Lewis; Rob W.H. Ruigrok; Juan Ortín; Darren J. Hart; Stephen Cusack

Influenza virus mRNAs are synthesized by the trimeric viral polymerase using short capped primers obtained by a cap-snatching mechanism. The polymerase PB2 subunit binds the 5′ cap of host pre-mRNAs, which are cleaved after 10–13 nucleotides by the PB1 subunit. Using a library-screening method, we identified an independently folded domain of PB2 that has specific cap binding activity. The X-ray structure of the domain with bound cap analog m7GTP at 2.3-Å resolution reveals a previously unknown fold and a mode of ligand binding that is similar to, but distinct from, other cap binding proteins. Binding and functional studies with point mutants confirm that the identified site is essential for cap binding in vitro and cap-dependent transcription in vivo by the trimeric polymerase complex. These findings clarify the nature of the cap binding site in PB2 and will allow efficient structure-based design of new anti-influenza compounds inhibiting viral transcription.


Nature | 1999

A Triple Beta-Spiral in the Adenovirus Fibre Shaft Reveals a New Structural Motif for a Fibrous Protein

M.J Van Raaij; Anna Mitraki; G Lavigne; Stephen Cusack

Human adenoviruses are responsible for respiratory, gastro-enteric and ocular infections and can serve as gene therapy vectors. They form icosahedral particles with 240 copies of the trimeric hexon protein arranged on the planes and a penton complex at each of the twelve vertices. The penton consists of a pentameric base, implicated in virus internalization, and a protruding trimeric fibre, responsible for receptor attachment. The fibres are homo-trimeric proteins containing an amino-terminal penton base attachment domain, a long, thin central shaft and a carboxy-terminal cell attachment or head domain. The shaft domain contains a repeating sequence motif with an invariant glycine or proline and a conserved pattern of hydrophobic residues. Here we describe the crystal structure at 2.4u2009Å resolution of a recombinant protein containing the four distal repeats of the adenovirus type 2 fibre shaft plus the receptor-binding head domain. The structure reveals a novel triple β-spiral fibrous fold for the shaft. Implications for folding of fibrous proteins (misfolding of shaft peptides leads to amyloid-like fibrils) and for the design of a new class of artificial, silk-like fibrous materials are discussed.


The EMBO Journal | 1992

The 2.2 A resolution crystal structure of influenza B neuraminidase and its complex with sialic acid.

W. P. Burmeister; Rob W. H. Ruigrok; Stephen Cusack

Influenza virus neuraminidase catalyses the cleavage of terminal sialic acid, the viral receptor, from carbohydrate chains on glycoproteins and glycolipids. We present the crystal structure of the enzymatically active head of influenza B virus neuraminidase from the strain B/Beijing/1/87. The native structure has been refined to a crystallographic R‐factor of 14.8% at 2.2 A resolution and its complex with sialic acid refined at 2.8 A resolution. The overall fold of the molecule is very similar to the already known structure of neuraminidase from influenza A virus, with which there is amino acid sequence homology of approximately 30%. Two calcium binding sites have been identified. One of them, previously undescribed, is located between the active site and a large surface antigenic loop. The calcium ion is octahedrally co‐ordinated by five oxygen atoms from the protein and one water molecule. Sequence comparisons suggest that this calcium site should occur in all influenza A and B virus neuraminidases. Soaking of sialic acid into the crystals has enabled the mode of binding of the reaction product in the putative active site pocket to be revealed. All the large side groups of the sialic acid are equatorial and are specifically recognized by nine fully conserved active site residues. These in turn are stabilized by a second shell of 10 highly conserved residues principally by an extensive network of hydrogen bonds.


The EMBO Journal | 1994

Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent.

Florence Baudin; C. Bach; Stephen Cusack; Rob W. H. Ruigrok

The influenza virus genome consists of eight segments of negative‐sense RNA, i.e. the viral (v) RNA forms the template for the mRNA. Each segment is encapsidated by the viral nucleoprotein to form a ribonucleoprotein (RNP) particle and each RNP carries its own polymerase complex. We studied the interaction of purified nucleoprotein with RNA in vitro, by using a variety of enzymatic and chemical probes for RNA conformation. Our results suggest that the nucleoprotein binds to the vRNA backbone without apparent sequence specificity, exposing the bases to the outside and melting all secondary structure. In this way, the viral polymerase may transcribe the RNA without the need for dissociating the nucleoprotein and without being stopped by RNA secondary structure, and the viral RNPs are ready to start transcription as soon as they enter the host cell.


PLOS Pathogens | 2008

Host Determinant Residue Lysine 627 Lies on the Surface of a Discrete, Folded Domain of Influenza Virus Polymerase Pb2 Subunit

Franck Tarendeau; Thibaut Crépin; Delphine Guilligay; Rob W.H. Ruigrok; Stephen Cusack; Darren J. Hart

Understanding how avian influenza viruses adapt to human hosts is critical for the monitoring and prevention of future pandemics. Host specificity is determined by multiple sites in different viral proteins, and mutation of only a limited number of these sites can lead to inter-species transmission. Several of these sites have been identified in the viral polymerase, the best characterised being position 627 in the PB2 subunit. Efficient viral replication at the relatively low temperature of the human respiratory tract requires lysine 627 rather than the glutamic acid variant found systematically in avian viruses. However, the molecular mechanism by which any of these host specific sites determine host range are unknown, although adaptation to host factors is frequently evoked. We used ESPRIT, a library screening method, to identify a new PB2 domain that contains a high density of putative host specific sites, including residue 627. The X-ray structure of this domain (denoted the 627-domain) exhibits a novel fold with the side-chain of Lys627 solvent exposed. The structure of the K627E mutated domain shows no structural differences but the charge reversal disrupts a striking basic patch on the domain surface. Five other recently proposed host determining sites of PB2 are also located on the 627-domain surface. The structure of the complete C-terminal region of PB2 comprising the 627-domain and the previously identified NLS-domain, which binds the host nuclear import factor importin alpha, was also determined. The two domains are found to pack together with a largely hydrophilic interface. These data enable a three-dimensional mapping of approximately half of PB2 sites implicated in cross-species transfer onto a single structural unit. Their surface location is consistent with roles in interactions with other viral proteins or host factors. The identification and structural characterization of these well-defined PB2 domains will help design experiments to elucidate the effects of mutations on polymerase–host factor interactions.


PLOS Pathogens | 2010

Bunyaviridae RNA polymerases (L-protein) have an N-terminal, influenza-like endonuclease domain, essential for viral cap-dependent transcription.

Juan Reguera; Friedemann Weber; Stephen Cusack

Bunyaviruses are a large family of segmented RNA viruses which, like influenza virus, use a cap-snatching mechanism for transcription whereby short capped primers derived by endonucleolytic cleavage of host mRNAs are used by the viral RNA-dependent RNA polymerase (L-protein) to transcribe viral mRNAs. It was recently shown that the cap-snatching endonuclease of influenza virus resides in a discrete N-terminal domain of the PA polymerase subunit. Here we structurally and functionally characterize a similar endonuclease in La Crosse orthobunyavirus (LACV) L-protein. We expressed N-terminal fragments of the LACV L-protein and found that residues 1-180 have metal binding and divalent cation dependent nuclease activity analogous to that of influenza virus endonuclease. The 2.2 Å resolution X-ray crystal structure of the domain confirms that LACV and influenza endonucleases have similar overall folds and identical two metal binding active sites. The in vitro activity of the LACV endonuclease could be abolished by point mutations in the active site or by binding 2,4-dioxo-4-phenylbutanoic acid (DPBA), a known influenza virus endonuclease inhibitor. A crystal structure with bound DPBA shows the inhibitor chelating two active site manganese ions. The essential role of this endonuclease in cap-dependent transcription was demonstrated by the loss of transcriptional activity in a RNP reconstitution system in cells upon making the same point mutations in the context of the full-length LACV L-protein. Using structure based sequence alignments we show that a similar endonuclease almost certainly exists at the N-terminus of L-proteins or PA polymerase subunits of essentially all known negative strand and cap-snatching segmented RNA viruses including arenaviruses (2 segments), bunyaviruses (3 segments), tenuiviruses (4–6 segments), and orthomyxoviruses (6–8 segments). This correspondence, together with the well-known mapping of the conserved polymerase motifs to the central regions of the L-protein and influenza PB1 subunit, suggests that L-proteins might be architecturally, and functionally equivalent to a concatemer of the three orthomyxovirus polymerase subunits in the order PA-PB1-PB2. Furthermore, our structure of a known influenza endonuclease inhibitor bound to LACV endonuclease suggests that compounds targeting a potentially broad spectrum of segmented RNA viruses, several of which are serious or emerging human, animal and plant pathogens, could be developed using structure-based optimisation.


Journal of Biological Chemistry | 2010

Influenza A Virus Polymerase: Structural Insights into Replication and Host Adaptation Mechanisms

Stéphane Boivin; Stephen Cusack; Rob W.H. Ruigrok; Darren J. Hart

The heterotrimeric RNA-dependent RNA polymerase of influenza viruses catalyzes RNA replication and transcription activities in infected cell nuclei. The nucleotide polymerization activity is common to both replication and transcription processes, with an additional cap-snatching function being employed during transcription to steal short 5′-capped RNA primers from host mRNAs. Cap-binding, endonuclease, and polymerase activities have long been studied biochemically, but structural studies on the polymerase and its subunits have been hindered by difficulties in producing sufficient quantities of material. Recently, because of heightened effort and advances in expression and crystallization technologies, a series of high resolution structures of individual domains have been determined. These shed light on intrinsic activities of the polymerase, including cap snatching, subunit association, and nucleocytoplasmic transport, and open up the possibility of structure-guided development of new polymerase inhibitors. Furthermore, the activity of influenza polymerase is highly host- and cell type-specific, being dependent on the identity of a few key amino acid positions in the different subunits, especially in the C-terminal region of PB2. New structures demonstrate the surface exposure of these residues, consistent with ideas that they might modulate interactions with host-specific factors that enhance or restrict activity. Recent proteomic and genome-wide interactome and RNA interference screens have suggested the identities of some of these potential regulators of polymerase function.


Gene Therapy | 2001

Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism

P Leissner; Valerie Legrand; Y Schlesinger; Da Hadji; M van Raaij; Stephen Cusack; Andrea Pavirani; M Mehtali

Targeting of adenovirus (Ad)-encoded therapeutic genes to specific cell types has become a major goal in gene therapy. Redirecting the specificity of infection requires the abrogation of the natural interaction between the viral fiber and its cellular receptors (CAR) and the simultaneous introduction of a new binding specificity into the viral capsid. To abrogate the natural affinity of the fiber, we have mutated residues presumed to be directly or indirectly involved in CAR-binding in the knob domain of the fiber protein. These residues are located in the AB loop (Ser408) and in the DG loop (Tyr491, Ala494, Ala503). The mutations Ser408Glu, Tyr491Asp, Ala494Asp and Ala503Asp did not prevent the incorporation of trimeric fibers in the viral capsid but led to loss of CAR binding in vitro. Infectivity of the mutant viruses could be restored in vitro by introducing a ligand at the C-terminal end of the knob, confirming that the reduced infectivity of the fiber-modified virus was due to an impaired interaction of the viral particle with the CAR receptor. However, after systemic delivery, the in vivo biodistribution of impaired CAR-binding viruses without addition of a specific ligand was not altered when compared with wild-type Ad.

Collaboration


Dive into the Stephen Cusack's collaboration.

Top Co-Authors

Avatar

Andrés Palencia

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kadlec

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Darren J. Hart

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rob W. H. Ruigrok

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge