Stephen D. Nicholls
Goddard Space Flight Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen D. Nicholls.
Monthly Weather Review | 2010
Stephen D. Nicholls; Karen I. Mohr
Abstract The local- and regional-scale environments associated with intense convective systems in West Africa during 2003 were diagnosed from soundings, operational analysis, and space-based datasets. Convective system cases were identified from the Tropical Rainfall Measuring Mission (TRMM) microwave imagery and classified by the system minimum 85-GHz brightness temperature and the estimated elapsed time of propagation from terrain greater than 500 m. The speed of the midlevel jet, the magnitude of the low-level shear, and the surface equivalent potential temperature θe were greater for the intense cases compared to the nonintense cases, although the differences between the means tended to be small: less than 3 K for surface θe and less than 2 × 10−3 s−1 for low-level wind shear. Hypothesis testing of a series of commonly used intensity prediction metrics resulted in significant results only for low-level metrics such as convective available potential energy and not for any of the mid- or upper-level met...
Monthly Weather Review | 2015
Stephen D. Nicholls; Steven G. Decker
AbstractThe impact of ocean–atmosphere coupling and its possible seasonal dependence upon Weather Research and Forecasting (WRF) Model simulations of seven, wintertime cyclone events was investigated. Model simulations were identical aside from the degree of ocean model coupling (static SSTs, 1D mixed layer model, full-physics 3D ocean model). Both 1D and 3D ocean model coupling simulations show that SSTs following the passage of a nor’easter did tend to cool more strongly during the early season (October–December) and were more likely to warm late in the season (February–April). Model simulations produce SST differences of up to 1.14 K, but this change did not lead to significant changes in storm track ( 1) and have low-to-moderate threat scores (0.31–0.59). Analysis of the storm enviro...
Monthly Weather Review | 2007
Stephen D. Nicholls; George S. Young
Abstract An observational analysis of the structure and synoptic setting of tropical dendritic cumulus formations was undertaken using 30 months of global data from the Moderate Resolution Imaging Spectroradiometer aboard the National Aeronautics and Space Administration Terra satellite, the Quick Scatterometer aboard the SeaWinds satellite, and the National Centers for Environmental Prediction global reanalysis. This analysis yielded 1216 cases of tropical dendritic cumulus formations of which 61 were randomly selected for quantitative study. From these sample cases, it was found that dendritic patterns in shallow cumulus occurred over warm tropical oceans in response to cold air advection. They typically dissipate downstream in regions of cooler water, neutral to warm advection, or deep convection. Moreover, shallow cumulus formations take on a dendritic pattern only in areas where the background wind velocity is between 1.5 and 13 m s−1 in the surface to the 850-mb layer and a shallow layer of conditio...
Geoscientific Model Development | 2016
Stephen D. Nicholls; Steven G. Decker; Wei-Kuo Tao; Stephen E. Lang; Jainn Shi; Karen I. Mohr
This study evaluated the impact of five, single- or double- moment bulk microphysics schemes (BMPSs) on Weather Research and Forecasting model (WRF) simulations of seven, intense winter time cyclones impacting the Mid-Atlantic United States. Five-day long WRF simulations were initialized roughly 24 hours prior to the onset of coastal cyclogenesis off the North Carolina coastline. In all, 35 model simulations (5 BMPSs and seven cases) were run and their associated microphysics-related storm properties (hydrometer mixing ratios, precipitation, and radar reflectivity) were evaluated against model analysis and available gridded radar and ground-based precipitation products. Inter-BMPS comparisons of column-integrated mixing ratios and mixing ratio profiles reveal little variability in non-frozen hydrometeor species due to their shared programming heritage, yet their assumptions concerning snow and graupel intercepts, ice supersaturation, snow and graupel density maps, and terminal velocities lead to considerable variability in both simulated frozen hydrometeor species and radar reflectivity. WRF-simulated precipitation fields exhibit minor spatio-temporal variability amongst BMPSs, yet their spatial extent is largely conserved. Compared to ground-based precipitation data, WRF-simulations demonstrate low-to-moderate (0.217-0.414) threat scores and a rainfall distribution shifted toward higher values. Finally, an analysis of WRF and gridded radar reflectivity data via contoured frequency with altitude (CFAD) diagrams reveals notable variability amongst BMPSs, where better performing schemes favored lower graupel mixing ratios and better underlying aggregation assumptions.
Journal of Geophysical Research | 2012
Zhiren Wang; Dexing Wu; Xuejia Song; Xueen Chen; Stephen D. Nicholls
98th American Meteorological Society Annual Meeting | 2018
Stephen D. Nicholls; Karen I. Mohr
Archive | 2015
Stephen D. Nicholls; Karen I. Mohr
16th Conference on Mesoscale Processes | 2015
Stephen D. Nicholls
15th Conference on Mesoscale Processes (August 6 - 9, 2013) | 2013
Stephen D. Nicholls
Archive | 2012
Zhiren Wang; Xuejia Song; Stephen D. Nicholls