Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Schmidt is active.

Publication


Featured researches published by Stephen D. Schmidt.


Science | 2010

Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1

Xueling Wu; Zhi-Yong Yang; Yuxing Li; Carl-Magnus Hogerkorp; William R. Schief; Michael S. Seaman; Tongqing Zhou; Stephen D. Schmidt; Lan Wu; Ling Xu; Nancy S. Longo; Krisha McKee; Sijy O’Dell; Mark K. Louder; Diane Wycuff; Yu Feng; Martha Nason; Nicole A. Doria-Rose; Mark Connors; Peter D. Kwong; Mario Roederer; Richard T. Wyatt; Gary J. Nabel; John R. Mascola

Designer Anti-HIV Developing a protective HIV vaccine remains a top global health priority. One strategy to identify potential vaccine candidates is to isolate broadly neutralizing antibodies from infected individuals and then attempt to elicit the same antibody response through vaccination (see the Perspective by Burton and Weiss). Wu et al. (p. 856, published online 8 July) now report the identification of three broadly neutralizing antibodies, isolated from an HIV-1–infected individual, that exhibited great breadth and potency of neutralization and were specific for the co-receptor CD4-binding site of the glycoprotein 120 (gp120), part of the viral Env spike. Zhou et al. (p. 811, published online 8 July) analyzed the crystal structure for one of these antibodies, VRC01, in complex with an HIV-1 gp120. VRC01 focuses its binding onto a conformationally invariant domain that is the site of initial CD4 attachment, which allows the antibody to overcome the glycan and conformational masking that diminishes the neutralization potency of most CD4-binding-site antibodies. The epitopes recognized by these antibodies suggest potential immunogens that can inform vaccine design. A human antibody achieves broad neutralization by binding the viral site of recognition for the primary host receptor, CD4. Cross-reactive neutralizing antibodies (NAbs) are found in the sera of many HIV-1–infected individuals, but the virologic basis of their neutralization remains poorly understood. We used knowledge of HIV-1 envelope structure to develop antigenically resurfaced glycoproteins specific for the structurally conserved site of initial CD4 receptor binding. These probes were used to identify sera with NAbs to the CD4-binding site (CD4bs) and to isolate individual B cells from such an HIV-1–infected donor. By expressing immunoglobulin genes from individual cells, we identified three monoclonal antibodies, including a pair of somatic variants that neutralized over 90% of circulating HIV-1 isolates. Exceptionally broad HIV-1 neutralization can be achieved with individual antibodies targeted to the functionally conserved CD4bs of glycoprotein 120, an important insight for future HIV-1 vaccine design.


Nature | 2011

Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9

Jason S. McLellan; Marie Pancera; Chris Carrico; Jason Gorman; Jean-Philippe Julien; Reza Khayat; Robert K. Louder; Robert Pejchal; Mallika Sastry; Kaifan Dai; Sijy O’Dell; Nikita Patel; Syed Shahzad-ul-Hussan; Yongping Yang; Baoshan Zhang; Tongqing Zhou; Jiang Zhu; Jeffrey C. Boyington; Gwo-Yu Chuang; Devan Diwanji; Ivelin S. Georgiev; Young Do Kwon; Doyung Lee; Mark K. Louder; Stephanie Moquin; Stephen D. Schmidt; Zhi-Yong Yang; Mattia Bonsignori; John A. Crump; Saidi Kapiga

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.


Nature | 2014

Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies

Nicole A. Doria-Rose; Chaim A. Schramm; Jason Gorman; Penny L. Moore; Jinal N. Bhiman; Brandon J. DeKosky; Michael J. Ernandes; Ivelin S. Georgiev; Helen J. Kim; Marie Pancera; Ryan P. Staupe; Han R. Altae-Tran; Robert T. Bailer; Ema T. Crooks; Albert Cupo; Aliaksandr Druz; Nigel Garrett; Kam Hon Hoi; Rui Kong; Mark K. Louder; Nancy S. Longo; Krisha McKee; Molati Nonyane; Sijy O’Dell; Ryan S. Roark; Rebecca S. Rudicell; Stephen D. Schmidt; Daniel J. Sheward; Cinque Soto; Constantinos Kurt Wibmer

Antibodies capable of neutralizing HIV-1 often target variable regions 1 and 2 (V1V2) of the HIV-1 envelope, but the mechanism of their elicitation has been unclear. Here we define the developmental pathway by which such antibodies are generated and acquire the requisite molecular characteristics for neutralization. Twelve somatically related neutralizing antibodies (CAP256-VRC26.01–12) were isolated from donor CAP256 (from the Centre for the AIDS Programme of Research in South Africa (CAPRISA)); each antibody contained the protruding tyrosine-sulphated, anionic antigen-binding loop (complementarity-determining region (CDR) H3) characteristic of this category of antibodies. Their unmutated ancestor emerged between weeks 30–38 post-infection with a 35-residue CDR H3, and neutralized the virus that superinfected this individual 15 weeks after initial infection. Improved neutralization breadth and potency occurred by week 59 with modest affinity maturation, and was preceded by extensive diversification of the virus population. HIV-1 V1V2-directed neutralizing antibodies can thus develop relatively rapidly through initial selection of B cells with a long CDR H3, and limited subsequent somatic hypermutation. These data provide important insights relevant to HIV-1 vaccine development.


Brain | 2011

Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer's disease ameliorates amyloid pathologies and memory deficits

Dun-Sheng Yang; Philip Stavrides; Panaiyur S. Mohan; Susmita Kaushik; Asok Kumar; Masuo Ohno; Stephen D. Schmidt; Daniel W. Wesson; Urmi Bandyopadhyay; Ying Jiang; Monika Pawlik; Corrinne M. Peterhoff; Austin J. Yang; Donald A. Wilson; Peter St George-Hyslop; David Westaway; Paul M. Mathews; Efrat Levy; Ana Maria Cuervo; Ralph A. Nixon

Autophagy, a major degradative pathway for proteins and organelles, is essential for survival of mature neurons. Extensive autophagic-lysosomal pathology in Alzheimers disease brain contributes to Alzheimers disease pathogenesis, although the underlying mechanisms are not well understood. Here, we identified and characterized marked intraneuronal amyloid-β peptide/amyloid and lysosomal system pathology in the Alzheimers disease mouse model TgCRND8 similar to that previously described in Alzheimers disease brains. We further establish that the basis for these pathologies involves defective proteolytic clearance of neuronal autophagic substrates including amyloid-β peptide. To establish the pathogenic significance of these abnormalities, we enhanced lysosomal cathepsin activities and rates of autophagic protein turnover in TgCRND8 mice by genetically deleting cystatin B, an endogenous inhibitor of lysosomal cysteine proteases. Cystatin B deletion rescued autophagic-lysosomal pathology, reduced abnormal accumulations of amyloid-β peptide, ubiquitinated proteins and other autophagic substrates within autolysosomes/lysosomes and reduced intraneuronal amyloid-β peptide. The amelioration of lysosomal function in TgCRND8 markedly decreased extracellular amyloid deposition and total brain amyloid-β peptide 40 and 42 levels, and prevented the development of deficits of learning and memory in fear conditioning and olfactory habituation tests. Our findings support the pathogenic significance of autophagic-lysosomal dysfunction in Alzheimers disease and indicate the potential value of restoring normal autophagy as an innovative therapeutic strategy for Alzheimers disease.


Proceedings of the National Academy of Sciences of the United States of America | 2003

In vivo reduction of amyloid-β by a mutant copper transporter

Amie L. Phinney; Bettina Drisaldi; Stephen D. Schmidt; Stan Lugowski; Veronica A. Coronado; Yan Liang; Patrick Horne; Jing Yang; Joannis Sekoulidis; Janaky Coomaraswamy; M. Azhar Chishti; Diane W. Cox; Paul M. Mathews; Ralph A. Nixon; George A. Carlson; Peter St George-Hyslop; David Westaway

Cu ions have been suggested to enhance the assembly and pathogenic potential of the Alzheimers disease amyloid-β (Aβ) peptide. To explore this relationship in vivo, toxic-milk (txJ) mice with a mutant ATPase7b transporter favoring elevated Cu levels were analyzed in combination with the transgenic (Tg) CRND8 amyloid precursor protein mice exhibiting robust Aβ deposition. Unexpectedly, TgCRND8 mice homozygous for the recessive txJ mutation examined at 6 months of age exhibited a reduced number of amyloid plaques and diminished plasma Aβ levels. In addition, homozygosity for txJ increased survival of young TgCRND8 mice and lowered endogenous CNS Aβ at times before detectable increases in Cu in the CNS. These data suggest that the beneficial effect of the txJ mutation on CNS Aβ burden may proceed by a previously undescribed mechanism, likely involving increased clearance of peripheral pools of Aβ peptide.


Journal of Virology | 2010

Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1

Marie Pancera; Jason S. McLellan; Xueling Wu; Jiang Zhu; Anita Changela; Stephen D. Schmidt; Yongping Yang; Tongqing Zhou; Sanjay Phogat; John R. Mascola; Peter D. Kwong

ABSTRACT HIV-1 resists neutralization by most antibodies. Two somatically related human antibodies, PG9 and PG16, however, each neutralize 70 to 80% of circulating HIV-1 isolates. Here we present the structure of the antigen-binding fragment of PG16 in monoclinic and orthorhombic lattices at 2.4 and 4.0 Å, respectively, and use a combination of structural analysis, paratope dissection, and neutralization assessment to determine the functional relevance of three unusual PG9/PG16 features: N-linked glycosylation, extensive affinity maturation, and a heavy chain-third complementarity-determining region (CDR H3) that is one of the longest observed in human antibodies. Glycosylation extended off the side of the light chain variable domain and was not required for neutralization. The CDR H3 formed an axe-shaped subdomain, which comprised 42% of the CDR surface, with the axe head looming ∼20 Å above the other combining loops. Comprehensive sets of chimeric swaps between PG9 and PG16 of light chain, heavy chain, and CDR H3 were employed to decipher structure-function relationships. Chimeric swaps generally complemented functionally, with differences in PG9/PG16 neutralization related primarily to residue differences in CDR H3. Meanwhile, chimeric reversions to genomic V genes showed isolate-dependent effects, with affinity maturation playing a significant role in augmenting neutralization breadth (P = 0.036) and potency (P < 0.0001). The structural and functional details of extraordinary CDR H3 and extensive affinity maturation provide insights into the neutralization mechanism of and the elicitation pathway for broadly neutralizing antibodies like PG9 and PG16.


Science Translational Medicine | 2011

Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

Norman L. Letvin; Srinivas S. Rao; David C. Montefiori; Michael S. Seaman; Yue Sun; So-Yon Lim; Wendy W. Yeh; Mohammed Asmal; Rebecca Gelman; Ling Shen; James B. Whitney; Cathal Seoighe; Miguel Lacerda; Sheila M. Keating; Philip J. Norris; Michael G. Hudgens; Peter B. Gilbert; Adam P. Buzby; Linh Mach; Jinrong Zhang; Harikrishnan Balachandran; George M. Shaw; Stephen D. Schmidt; John Paul Todd; Alan Dodson; John R. Mascola; Gary J. Nabel

A vaccine protecting monkeys against mucosal infection by simian immunodeficiency virus sheds light on immune and genetic correlates of protection. Unraveling Immune Correlates of Vaccine Protection Developing an effective vaccine against HIV-1, the virus that causes AIDS, has been a huge challenge that has stymied AIDS researchers for several decades. A key problem for HIV vaccine trials has been the lack of immune correlates that indicate which antibody and T cell responses in the vaccinees correlate directly with a protective effect. The only HIV vaccine trial to date that has shown a protective effect is the RV144 trial carried out in Thailand between 2003 and 2006, with the final results reported in 2009. In this trial of 16,400 Thai volunteers, those vaccinated with a prime-boost HIV vaccine showed a reduction in the rate of infection by HIV-1 of 31% compared to volunteers given a placebo. The protective effect was seen for up to 3 years after the initial vaccination, but the immune correlates of protection by this vaccine are still not known. In an effort to learn more about possible immune correlates of HIV vaccine protection, Letvin and colleagues used a prime/boost vaccine regimen in monkeys that was similar to that used in the RV144 trial. Monkeys were vaccinated with a plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen and then were challenged with intrarectal doses of one of two isolates of the simian immunodeficiency virus (SIV) every week for 12 weeks. Although the vaccine had no impact on acquisition of the SIVmac251 isolate (which is tough for the monkey immune system to neutralize), the vaccine provided a 50% reduction in infection with the SIVsmE660 isolate (which more readily undergoes neutralization). The authors then examined a variety of immune responses in the protected vaccinated monkeys including cellular, antibody, and innate immune responses; they also examined whether protective host alleles were present in the protected animals. They found that low levels of neutralizing antibodies and a CD4+ T cell response against the HIV envelope (Env) protein correlated with the protective effect. In addition, monkeys that expressed two TRIM5 alleles that help to restrict SIV replication in host cells were protected by the vaccine, whereas monkeys expressing one TRIM5 allele that is permissive for SIV replication were not. This study begins to unravel the immune and genetic correlates of protection in nonhuman primates and highlights the need to scrutinize these types of correlates in future trials of HIV vaccines in human volunteers. The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01–negative monkeys challenged with SIVsmE660, no CD8+ T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4+ T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Unliganded HIV-1 gp120 core structures assume the CD4-bound conformation with regulation by quaternary interactions and variable loops.

Young Do Kwon; Andrés Finzi; Xueling Wu; Cajetan Dogo-Isonagie; Lawrence K. Lee; Lucas R. Moore; Stephen D. Schmidt; Jonathan Stuckey; Yongping Yang; Tongqing Zhou; Jiang Zhu; David A. Vicic; Asim K. Debnath; Lawrence Shapiro; Carole A. Bewley; John R. Mascola; Joseph Sodroski; Peter D. Kwong

The HIV-1 envelope (Env) spike (gp1203/gp413) undergoes considerable structural rearrangements to mediate virus entry into cells and to evade the host immune response. Engagement of CD4, the primary human receptor, fixes a particular conformation and primes Env for entry. The CD4-bound state, however, is prone to spontaneous inactivation and susceptible to antibody neutralization. How does unliganded HIV-1 maintain CD4-binding capacity and regulate transitions to the CD4-bound state? To define this mechanistically, we determined crystal structures of unliganded core gp120 from HIV-1 clades B, C, and E. Notably, all of these unliganded HIV-1 structures resembled the CD4-bound state. Conformational fixation with ligand selection and thermodynamic analysis of full-length and core gp120 interactions revealed that the tendency of HIV-1 gp120 to adopt the CD4-bound conformation was restrained by the V1/V2- and V3-variable loops. In parallel, we determined the structure of core gp120 in complex with the small molecule, NBD-556, which specifically recognizes the CD4-bound conformation of gp120. Neutralization by NBD-556 indicated that Env spikes on primary isolates rarely assume the CD4-bound conformation spontaneously, although they could do so when quaternary restraints were loosened. Together, the results suggest that the CD4-bound conformation represents a “ground state” for the gp120 core, with variable loop and quaternary interactions restraining unliganded gp120 from “snapping” into this conformation. A mechanism of control involving deformations in unliganded structure from a functionally critical state (e.g., the CD4-bound state) provides advantages in terms of HIV-1 Env structural diversity and resistance to antibodies and inhibitors, while maintaining elements essential for entry.


Journal of Clinical Investigation | 2008

Inhibition of calpains improves memory and synaptic transmission in a mouse model of Alzheimer disease

Fabrizio Trinchese; Mauro Fa; Shumin Liu; Hong Zhang; Ariel Hidalgo; Stephen D. Schmidt; Hisako Yamaguchi; Narihiko Yoshii; Paul M. Mathews; Ralph A. Nixon; Ottavio Arancio

Calpains are calcium-dependent enzymes that determine the fate of proteins through regulated proteolytic activity. Calpains have been linked to the modulation of memory and are key to the pathogenesis of Alzheimer disease (AD). When abnormally activated, calpains can also initiate degradation of proteins essential for neuronal survival. Here we show that calpain inhibition through E64, a cysteine protease inhibitor, and the highly specific calpain inhibitor BDA-410 restored normal synaptic function both in hippocampal cultures and in hippocampal slices from the APP/PS1 mouse, an animal model of AD. Calpain inhibition also improved spatial-working memory and associative fear memory in APP/PS1 mice. These beneficial effects of the calpain inhibitors were associated with restoration of normal phosphorylation levels of the transcription factor CREB and involved redistribution of the synaptic protein synapsin I. Thus, calpain inhibition may prove useful in the alleviation of memory loss in AD.


Journal of Virology | 2011

Mechanism of Neutralization by the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01

Yuxing Li; Sijy O'Dell; Laura M. Walker; Xueling Wu; Javier Guenaga; Yu Feng; Stephen D. Schmidt; Krisha McKee; Mark K. Louder; Julie E. Ledgerwood; Barney S. Graham; Barton F. Haynes; Dennis R. Burton; Richard T. Wyatt; John R. Mascola

ABSTRACT The structure of VRC01 in complex with the HIV-1 gp120 core reveals that this broadly neutralizing CD4 binding site (CD4bs) antibody partially mimics the interaction of the primary virus receptor, CD4, with gp120. Here, we extended the investigation of the VRC01-gp120 core interaction to the biologically relevant viral spike to better understand the mechanism of VRC01-mediated neutralization and to define viral elements associated with neutralization resistance. In contrast to the interaction of CD4 or the CD4bs monoclonal antibody (MAb) b12 with the HIV-1 envelope glycoprotein (Env), occlusion of the VRC01 epitope by quaternary constraints was not a major factor limiting neutralization. Mutagenesis studies indicated that VRC01 contacts within the gp120 loop D, the CD4 binding loop, and the V5 region were necessary for optimal VRC01 neutralization, as suggested by the crystal structure. In contrast to interactions with the soluble gp120 monomer, VRC01 interaction with the native viral spike did not occur in a CD4-like manner; VRC01 did not induce gp120 shedding from the Env spike or enhance gp41 membrane proximal external region (MPER)-directed antibody binding to the Env spike. Finally, VRC01 did not display significant reactivity with human antigens, boding well for potential in vivo applications. The data indicate that VRC01 interacts with gp120 in the context of the functional spike in a manner distinct from that of CD4. It achieves potent neutralization by precisely targeting the CD4bs without requiring alterations of Env spike configuration and by avoiding steric constraints imposed by the quaternary structure of the functional Env spike.

Collaboration


Dive into the Stephen D. Schmidt's collaboration.

Top Co-Authors

Avatar

John R. Mascola

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark K. Louder

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nicole A. Doria-Rose

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ivelin S. Georgiev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter D. Kwong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Krisha McKee

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mark Connors

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tongqing Zhou

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge