Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Thorpe is active.

Publication


Featured researches published by Stephen D. Thorpe.


Biochemical and Biophysical Research Communications | 2008

Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells.

Stephen D. Thorpe; Conor T. Buckley; Tatiana Vinardell; Fergal J. O’Brien; Veronica A. Campbell; Daniel J. Kelly

The objective of this study was to investigate the influence of dynamic compressive loading on chondrogenesis of mesenchymal stem cells (MSCs) in the presence of TGF-beta3. Isolated porcine MSCs were suspended in 2% agarose and subjected to intermittent dynamic compression (10% strain) for a period of 42 days in a dynamic compression bioreactor. After 42 days in culture, the free-swelling specimens exhibited more intense alcian blue staining for proteoglycans, while immunohistochemical analysis revealed increased collagen type II immunoreactivity. Glycosaminoglycan (GAG) content increased with time for both free-swelling and dynamically loaded constructs, and by day 42 it was significantly higher in both the core (2.5+/-0.21%w/w vs. 0.94+/-0.03%w/w) and annulus (1.09+/-0.09%w/w vs. 0.59+/-0.08%w/w) of free-swelling constructs compared to dynamically loaded constructs. This result suggests that further optimization is required in controlling the biomechanical and/or the biochemical environment if such stimuli are to have beneficial effects in generating functional cartilaginous tissue.


Journal of Biomechanics | 2010

Low oxygen tension is a more potent promoter of chondrogenic differentiation than dynamic compression

Eric G. Meyer; Conor T. Buckley; Stephen D. Thorpe; Daniel J. Kelly

During fracture healing and microfracture treatment of cartilage defects mesenchymal stem cells (MSCs) infiltrate the wound site, proliferate extensively and differentiate along a cartilaginous or an osteogenic lineage in response to local environmental cues. MSCs may be able to directly sense their mechanical environment or alternatively, the mechanical environment could act indirectly to regulate MSC differentiation by inhibiting angiogenesis and diminishing the supply of oxygen and other regulatory factors. Dynamic compression has been shown to regulate chondrogenesis of MSCs. In addition, previous studies have shown that a low oxygen environment promotes in vitro chondrogenesis of MSCs. The hypothesis of this study is that a low oxygen environment is a more potent promoter of chondrogenic differentiation of MSCs embedded in agarose hydrogels compared to dynamic compression. In MSC-seeded constructs supplemented with TGF-beta3, GAG and collagen accumulation was higher in low oxygen conditions compared to normoxia. For normoxic and low oxygen culture GAG accumulation within the agarose hydrogel was inhomogeneous, with low levels of GAG measured in the annulus of constructs maintained in normoxic conditions. Dynamic compression did not significantly increase GAG or collagen accumulation in normoxia. However under low oxygen conditions, dynamic compression reduced GAG accumulation compared to free-swelling controls, but remained higher than comparable constructs maintained in normoxic conditions. This study demonstrates that continuous exposure to low oxygen tension is a more potent pro-chondrogenic stimulus than 1h/day of dynamic compression for porcine MSCs embedded in agarose hydrogels.


Journal of Biomechanics | 2010

Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells

Conor T. Buckley; Tatiana Vinardell; Stephen D. Thorpe; Matthew G. Haugh; Elena Jones; Dennis McGonagle; Daniel J. Kelly

Articular cartilage has a poor intrinsic capacity for self-repair. The advent of autologous chondrocyte implantation has provided a feasible method to treat cartilage defects. However, the associated drawbacks with the isolation and expansion of chondrocytes from autologous tissue has prompted research into alternative cell sources such as mesenchymal stem cells (MSCs) which have been found to exist in the bone marrow as well as other joint tissues such as the infrapatellar fat pad (IFP), synovium and within the synovial fluid itself. In this work we assessed the chondrogenic potential of IFP-derived porcine cells over a 6 week period in agarose hydrogel culture in terms of mechanical properties, biochemical content and histology. It was found that IFP cells underwent robust chondrogenesis as assessed by glycosaminoglycan (1.47+/-0.22% w/w) and collagen (1.44+/-0.22% w/w) accumulation after 42 days of culture. The 1Hz dynamic modulus of the engineered tissue at this time point was 272.8 kPa (+/-46.8). The removal of TGF-beta3 from culture after 21 days was shown to have a significant effect on both the mechanical properties and biochemical content of IFP constructs after 42 days, with minimal increases occurring from day 21 to day 42 without continued supplementation of TGF-beta3. These findings further strengthen the case that the IFP may be a promising cell source for putative cartilage repair strategies.


Acta Biomaterialia | 2012

Cell-matrix interactions regulate mesenchymal stem cell response to hydrostatic pressure

Andrew J. Steward; Stephen D. Thorpe; Tatiana Vinardell; Conor T. Buckley; Diane R. Wagner; Daniel J. Kelly

Both hydrostatic pressure (HP) and cell-matrix interactions have independently been shown to regulate the chondrogenic differentiation of mesenchymal stem cells (MSCs). The objective of this study was to test the hypothesis that the response of MSCs to hydrostatic pressure will depend on the biomaterial within which the cells are encapsulated. Bone-marrow-derived MSCs were seeded into either agarose or fibrin hydrogels and exposed to 10 MPa of cyclic HP (1 Hz, 4 h per day, 5 days per week for 3 weeks) in the presence of either 1 or 10 ng ml(-1) of TGF-β3. Agarose hydrogels were found to support a spherical cellular morphology, while MSCs seeded into fibrin hydrogels attached and spread, with clear stress fiber formation. Hydrogel contraction was also observed in MSC-fibrin constructs. While agarose hydrogels better supported chondrogenesis of MSCs, HP only enhanced sulfated glycosaminoglycan (sGAG) accumulation in fibrin hydrogels, which correlated with a reduction in fibrin contraction. HP also reduced alkaline phosphatase activity in the media for both agarose and fibrin constructs, suggesting that this stimulus plays a role in the maintenance of the chondrogenic phenotype. This study demonstrates that a complex relationship exists between cell-matrix interactions and hydrostatic pressure, which plays a key role in regulating the chondrogenic differentiation of MSCs.


PLOS ONE | 2013

Modulating Gradients in Regulatory Signals within Mesenchymal Stem Cell Seeded Hydrogels: A Novel Strategy to Engineer Zonal Articular Cartilage

Stephen D. Thorpe; Thomas Nagel; Simon F. Carroll; Daniel J. Kelly

Engineering organs and tissues with the spatial composition and organisation of their native equivalents remains a major challenge. One approach to engineer such spatial complexity is to recapitulate the gradients in regulatory signals that during development and maturation are believed to drive spatial changes in stem cell differentiation. Mesenchymal stem cell (MSC) differentiation is known to be influenced by both soluble factors and mechanical cues present in the local microenvironment. The objective of this study was to engineer a cartilaginous tissue with a native zonal composition by modulating both the oxygen tension and mechanical environment thorough the depth of MSC seeded hydrogels. To this end, constructs were radially confined to half their thickness and subjected to dynamic compression (DC). Confinement reduced oxygen levels in the bottom of the construct and with the application of DC, increased strains across the top of the construct. These spatial changes correlated with increased glycosaminoglycan accumulation in the bottom of constructs, increased collagen accumulation in the top of constructs, and a suppression of hypertrophy and calcification throughout the construct. Matrix accumulation increased for higher hydrogel cell seeding densities; with DC further enhancing both glycosaminoglycan accumulation and construct stiffness. The combination of spatial confinement and DC was also found to increase proteoglycan-4 (lubricin) deposition toward the top surface of these tissues. In conclusion, by modulating the environment through the depth of developing constructs, it is possible to suppress MSC endochondral progression and to engineer tissues with zonal gradients mimicking certain aspects of articular cartilage.


Journal of Tissue Engineering and Regenerative Medicine | 2011

Composition–function relations of cartilaginous tissues engineered from chondrocytes and mesenchymal stem cells isolated from bone marrow and infrapatellar fat pad

Tatiana Vinardell; Conor T. Buckley; Stephen D. Thorpe; Daniel J. Kelly

The objective of this study was to determine the functional properties of cartilaginous tissues generated by porcine MSCs isolated from different tissue sources, and to compare these properties to those derived from chondrocytes (CCs). MSCs were isolated from bone marrow (BM) and infrapatellar fat pad (FP), while CCs were harvested from the articular surface of the femoro‐patellar joint. Culture‐expanded CCs and MSCs were encapsulated in agarose hydrogels and cultured in the presence of TGFβ3. Samples were analysed biomechanically, biochemically and histologically at days 0, 21 and 42. After 42 days in free swelling culture, mean GAG content was 1.50% w/w in CC‐seeded constructs, compared to 0.95% w/w in FP‐ and 0.43% w/w in BM‐seeded constructs. Total collagen accumulation was highest in FP constructs. DNA content increased with time for all the groups. The mechanical functionality of cartilaginous tissues engineered using CCs was superior to that generated from either source of MSCs. Differences were also observed in the spatial distribution of matrix components in tissues engineered using CCs and MSCs, which appears to have a strong influence on the apparent mechanical properties of the constructs. Therefore, while functional cartilaginous tissues can be engineered using MSCs isolated from different sources, the spatial composition of these tissues is unlike that generated using chondrocytes, suggesting that MSCs and chondrocytes respond differently to the regulatory factors present within developing cartilaginous constructs. Copyright


Tissue Engineering Part A | 2011

Temporal and Spatial Changes in Cartilage-Matrix-Specific Gene Expression in Mesenchymal Stem Cells in Response to Dynamic Compression

Matthew G. Haugh; Eric G. Meyer; Stephen D. Thorpe; Tatiana Vinardell; Garry P. Duffy; Daniel J. Kelly

Various forms of mechanical stimulation have been shown to enhance chondrogenesis of mesenchymal stem cells (MSCs). However, the response of MSCs undergoing chondrogenesis to such signals has been shown to depend on the temporal application of loading. The objective of this study was to determine the effect of dynamic compression on cartilage-matrix-specific gene expression and to relate this response to the local biochemical environment and cell phenotype at the time of loading. At 0, 7, 14, and 21 days extracellular matrix (ECM) deposition within MSC-seeded agarose hydrogels due to transforming growth factor-β3 stimulation was determined biochemically and histologically, and then reverse transcription-polymerase chain reaction was used to examine the effects of dynamic compression on cartilage-matrix-specific gene expression. The results of these experiments show that the local environment in the core of the constructs is more favorable for chondrogenesis in comparison to the annulus, as evident from both ECM synthesis and gene expression. Additionally, we found that the response of the cells to mechanical stimulus varied with both the spatial region within the constructs and the temporal application of loading. Dynamic compression applied at day 21 was found to enhance levels of cartilage matrix gene expression following a peak in expression levels at day 14 in free swelling constructs, suggesting that mechanical signals play a key role in the maintenance of a chondrogenic phenotype. The application of mechanical stimulus to enhance cartilage ECM synthesis may be an important tool in regenerative medicine-based cartilage repair. The results of this study suggest that a chondrogenic phenotype and/or a well-developed pericellular matrix must first be established before dynamic compression can have a positive effect on cartilage-matrix-specific gene expression.


Journal of Biomechanics | 2012

European Society of Biomechanics S.M. Perren Award 2012: the external mechanical environment can override the influence of local substrate in determining stem cell fate.

Stephen D. Thorpe; Conor T. Buckley; Andrew J. Steward; Daniel J. Kelly

The aim of this study was to explore how cell-matrix interactions and extrinsic mechanical signals interact to determine stem cell fate in response to transforming growth factor-β3 (TGF-β3). Bone marrow derived mesenchymal stem cells (MSCs) were seeded in agarose and fibrin hydrogels and subjected to dynamic compression in the presence of different concentrations of TGF-β3. Markers of chondrogenic, myogenic and endochondral differentiation were assessed. MSCs embedded within agarose hydrogels adopted a spherical cell morphology, while cells directly adhered to the fibrin matrix and took on a spread morphology. Free-swelling agarose constructs stained positively for chondrogenic markers, with MSCs appearing to progress towards terminal differentiation as indicated by mineral staining. MSC seeded fibrin constructs progressed along an alternative myogenic pathway in long-term free-swelling culture. Dynamic compression suppressed differentiation towards any investigated lineage in both fibrin and agarose hydrogels in the short-term. Given that fibrin clots have been shown to support a chondrogenic phenotype in vivo within mechanically loaded joint defect environments, we next explored the influence of long term (42 days) dynamic compression on MSC differentiation. Mechanical signals generated by this extrinsic loading ultimately governed MSC fate, directing MSCs along a chondrogenic pathway as opposed to the default myogenic phenotype supported within unloaded fibrin clots. In conclusion, this study demonstrates that external cues such as the mechanical environment can override the influence specific substrates, scaffolds or hydrogels have on determining mesenchymal stem cell fate. The temporal data presented in this study highlights the importance of considering how MSCs respond to extrinsic mechanical signals in the long term.


Scientific Reports | 2015

Biophysical Regulation of Chromatin Architecture Instills a Mechanical Memory in Mesenchymal Stem Cells

Su-Jin Heo; Stephen D. Thorpe; Tristan P. Driscoll; Randall L. Duncan; David A. Lee; Robert L. Mauck

Mechanical cues direct the lineage commitment of mesenchymal stem cells (MSCs). In this study, we identified the operative molecular mechanisms through which dynamic tensile loading (DL) regulates changes in chromatin organization and nuclear mechanics in MSCs. Our data show that, in the absence of exogenous differentiation factors, short term DL elicits a rapid increase in chromatin condensation, mediated by acto-myosin based cellular contractility and the activity of the histone-lysine N-methyltransferase EZH2. The resulting change in chromatin condensation stiffened the MSC nucleus, making it less deformable when stretch was applied to the cell. We also identified stretch induced ATP release and purinergic calcium signaling as a central mediator of this chromatin condensation process. Further, we showed that DL, through differential stabilization of the condensed chromatin state, established a ‘mechanical memory’ in these cells. That is, increasing strain levels and number of loading events led to a greater degree of chromatin condensation that persisted for longer periods of time after the cessation of loading. These data indicate that, with mechanical perturbation, MSCs develop a mechanical memory encoded in structural changes in the nucleus which may sensitize them to future mechanical loading events and define the trajectory and persistence of their lineage specification.


Stem Cells | 2015

Adipogenic Differentiation of hMSCs is Mediated by Recruitment of IGF‐1r Onto the Primary Cilium Associated With Cilia Elongation

Melis T. Dalbay; Stephen D. Thorpe; John T. Connelly; J. Paul Chapple; Martin M. Knight

Primary cilia are single non‐motile organelles that provide a highly regulated compartment into which specific proteins are trafficked as a critical part of various signaling pathways. The absence of primary cilia has been shown to prevent differentiation of human mesenchymal stem cells (hMSCs). Changes in primary cilia length are crucial for regulating signaling events; however it is not known how alterations in cilia structure relate to differentiation. This study tested the hypothesis that changes in primary cilia structure are required for stem cell differentiation. hMSCs expressed primary cilia that were labeled with acetylated alpha tubulin and visualized by confocal microscopy. Chemically induced differentiation resulted in lineage specific changes in cilia length and prevalence which were independent of cell cycle. In particular, adipogenic differentiation resulted in cilia elongation associated with the presence of dexamethasone, while insulin had an inhibitory effect on cilia length. Over a 7‐day time course, adipogenic differentiation media resulted in cilia elongation within 2 days followed by increased nuclear PPARγ levels; an early marker of adipogenesis. Cilia elongation was associated with increased trafficking of insulin‐like growth factor‐1 receptor β (IGF‐1Rβ) into the cilium. This was reversed on inhibition of elongation by IFT‐88 siRNA transfection, which also decreased nuclear PPARγ. This is the first study to show that adipogenic differentiation requires primary cilia elongation associated with the recruitment of IGF‐1Rβ onto the cilium. This study may lead to the development of cilia‐targeted therapies for controlling adipogenic differentiation and associated conditions such as obesity. Stem Cells 2015;33:1952–1961

Collaboration


Dive into the Stephen D. Thorpe's collaboration.

Top Co-Authors

Avatar

Martin M. Knight

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

David A. Lee

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Clare L. Thompson

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fergal J. O’Brien

Royal College of Surgeons in Ireland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristina Sliogeryte

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Eric G. Meyer

Lawrence Technological University

View shared research outputs
Top Co-Authors

Avatar

Robert L. Mauck

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge