Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen D. Turley is active.

Publication


Featured researches published by Stephen D. Turley.


Cell | 1998

Cholesterol and Bile Acid Metabolism Are Impaired in Mice Lacking the Nuclear Oxysterol Receptor LXRα

Daniel J. Peet; Stephen D. Turley; Wenzhen Ma; Bethany A. Janowski; Jean Marc A Lobaccaro; Robert E. Hammer; David J. Mangelsdorf

We demonstrate that mice lacking the oxysterol receptor, LXR alpha, lose their ability to respond normally to dietary cholesterol and are unable to tolerate any amount of cholesterol in excess of that which they synthesize de novo. When fed diets containing cholesterol, LXR alpha (-/-) mice fail to induce transcription of the gene encoding cholesterol 7alpha-hydroxylase (Cyp7a), the rate-limiting enzyme in bile acid synthesis. This defect is associated with a rapid accumulation of large amounts of cholesterol in the liver that eventually leads to impaired hepatic function. The regulation of several other crucial lipid metabolizing genes is also altered in LXR alpha (-/-) mice. These results demonstrate the existence of a physiologically significant feed-forward regulatory pathway for sterol metabolism and establish the role of LXR alpha as the major sensor of dietary cholesterol.


Current Opinion in Lipidology | 2001

Cholesterol metabolism in the brain.

John M. Dietschy; Stephen D. Turley

The central nervous system accounts for only 2% of the whole body mass but contains almost a quarter of the unesterified cholesterol present in the whole individual. This sterol is largely present in two pools comprised of the cholesterol in the plasma membranes of glial cells and neurons and the cholesterol present in the specialized membranes of myelin. From 0.02% (human) to 0.4% (mouse) of the cholesterol in these pools turns over each day so that the absolute flux of sterol across the brain is only approximately 0.9% as rapid as the turnover of cholesterol in the whole body of these respective species. The input of cholesterol into the central nervous system comes almost entirely from in situ synthesis, and there is currently little evidence for the net transfer of sterol from the plasma into the brain of the fetus, newborn or adult. In the steady state in the adult, an equivalent amount of cholesterol must move out of the brain and this output is partly accounted for by the formation and excretion of 24S-hydroxycholesterol. This cholesterol turnover across the brain is increased in neurodegenerative disorders such as Alzheimers disease and Niemann-Pick type C disease. Indirect evidence suggests that large amounts of cholesterol also turn over among the glial cells and neurons within the central nervous system during brain growth and neuron repair and remodelling. This internal recycling of sterol may involve ligands such as apolipoproteins E and AI, and one or more membrane transport proteins such as members of the low density lipoprotein receptor family. Changes in cholesterol balance across the whole body may, in some way, cause alterations in sterol recycling and apolipoprotein E expression within the central nervous system, which, in turn, may affect neuron and myelin integrity. Further elucidation of the processes controlling these events is very important to understand a variety of neurodegenerative disorders.


Journal of Clinical Investigation | 1997

THE INSULINOTROPIC POTENCY OF FATTY ACIDS IS INFLUENCED PROFOUNDLY BY THEIR CHAIN LENGTH AND DEGREE OF SATURATION

Daniel T. Stein; B E Stevenson; M W Chester; M Basit; M B Daniels; Stephen D. Turley; J D McGarry

Lowering of the elevated plasma FFA concentration in 18- 24-h fasted rats with nicotinic acid (NA) caused complete ablation of subsequent glucose-stimulated insulin secretion (GSIS). Although the effect of NA was reversed when the fasting level of total FFA was maintained by coinfusion of soybean oil or lard oil (plus heparin), the more saturated animal fat proved to be far more potent in enhancing GSIS. We therefore examined the influence of individual fatty acids on insulin secretion in the perfused rat pancreas. When present in the perfusion fluid at 0.5 mM (in the context of 1% albumin), the fold stimulation of insulin release from the fasted pancreas in response to 12.5 mM glucose was as follows: octanoate (C8:0), 3.4; linoleate (C18:2 cis/cis), 5.3; oleate (C18:1 cis), 9.4; palmitate (C16:0), 16. 2; and stearate (C18:0), 21.0. The equivalent value for palmitoleate (C16:1 cis) was 3.1. A cis--> trans switch of the double bond in the C16:1 and C18:1 fatty acids had only a modest, if any, impact on their potency. A similar profile emerged with regard to basal insulin secretion (3 mM glucose). When a subset of these fatty acids was tested in pancreases from fed animals, the same rank order of effectiveness at both basal and stimulatory levels of glucose was seen. The findings reaffirm the essentiality of an elevated plasma FFA concentration for GSIS in the fasted rat. They also show, however, that the insulinotropic effect of individual fatty acids spans a remarkably broad range, increasing and decreasing dramatically with chain length and degree of unsaturation, respectively. Thus, for any given level of glucose, insulin secretion will be influenced greatly not only by the combined concentration of all circulating (unbound) FFA, but also by the makeup of this FFA pool. Both factors will likely be important considerations in understanding the complex interplay between the nature of dietary fat and whole body insulin, glucose, and lipid dynamics.


Nature Medicine | 2000

Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice

Kimberly K. Buhman; Michel Accad; Sabine Novak; Rebekah S. Choi; Jinny S. Wong; Robert L. Hamilton; Stephen D. Turley; Robert V. Farese

The importance of cholesterol ester synthesis by acyl CoA:cholesterol acyltransferase (ACAT) enzymes in intestinal and hepatic cholesterol metabolism has been unclear. We now demonstrate that ACAT2 is the major ACAT in mouse small intestine and liver, and suggest that ACAT2 deficiency has profound effects on cholesterol metabolism in mice fed a cholesterol-rich diet, including complete resistance to diet-induced hypercholesterolemia and cholesterol gallstone formation. The underlying mechanism involves the lack of cholesterol ester synthesis in the intestine and a resultant reduced capacity to absorb cholesterol. Our results indicate that ACAT2 has an important role in the response to dietary cholesterol, and suggest that ACAT2 inhibition may be a useful strategy for treating hypercholesterolemia or cholesterol gallstones.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1−/− mouse

Benny Liu; Stephen D. Turley; Dennis K. Burns; Anna M. Miller; Joyce J. Repa; John M. Dietschy

Niemann-Pick type C disease is largely attributable to an inactivating mutation of NPC1 protein, which normally aids movement of unesterified cholesterol (C) from the endosomal/lysosomal (E/L) compartment to the cytosolic compartment of cells throughout the body. This defect results in activation of macrophages in many tissues, progressive liver disease, and neurodegeneration. In the npc1−/− mouse, a model of this disease, the whole-animal C pool expands from 2,082 to 4,925 mg/kg body weight (bw) and the hepatic C pool increases from 132 to 1,485 mg/kg bw between birth and 49 days of age. A single dose of 2-hydroxypropyl-β-cyclodextrin (CYCLO) administered at 7 days of age immediately caused this sequestered C to flow from the lysosomes to the cytosolic pool in many organs, resulting in a marked increase in cholesteryl esters, suppression of C but not fatty acid synthesis, down-regulation of genes controlled by sterol regulatory element 2, and up-regulation of many liver X receptor target genes. There was also decreased expression of proinflammatory proteins in the liver and brain. In the liver, where the rate of C sequestration equaled 79 mg·d−1·kg−1, treatment with CYCLO within 24 h increased C movement out of the E/L compartment from near 0 to 233 mg·d−1·kg−1. By 49 days of age, this single injection of CYCLO resulted in a reduction in whole-body C burden of >900 mg/kg, marked improvement in liver function tests, much less neurodegeneration, and, ultimately, significant prolongation of life. These findings suggest that CYCLO acutely reverses the lysosomal transport defect seen in NPC disease.


Atherosclerosis | 2014

Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease

Helena Gylling; Jogchum Plat; Stephen D. Turley; Henry N. Ginsberg; Lars Ellegård; Wendy Jessup; Peter J. H. Jones; Dieter Lütjohann; Winfried Maerz; Luis Masana; Günther Silbernagel; Bart Staels; Jan Borén; Alberico L. Catapano; Guy De Backer; John Deanfield; Olivier S. Descamps; Petri T. Kovanen; Gabriele Riccardi; Lale Tokgozoglu; M. John Chapman

OBJECTIVE This EAS Consensus Panel critically appraised evidence relevant to the benefit to risk relationship of functional foods with added plant sterols and/or plant stanols, as components of a healthy lifestyle, to reduce plasma low-density lipoprotein-cholesterol (LDL-C) levels, and thereby lower cardiovascular risk. METHODS AND RESULTS Plant sterols/stanols (when taken at 2 g/day) cause significant inhibition of cholesterol absorption and lower LDL-C levels by between 8 and 10%. The relative proportions of cholesterol versus sterol/stanol levels are similar in both plasma and tissue, with levels of sterols/stanols being 500-/10,000-fold lower than those of cholesterol, suggesting they are handled similarly to cholesterol in most cells. Despite possible atherogenicity of marked elevations in circulating levels of plant sterols/stanols, protective effects have been observed in some animal models of atherosclerosis. Higher plasma levels of plant sterols/stanols associated with intakes of 2 g/day in man have not been linked to adverse effects on health in long-term human studies. Importantly, at this dose, plant sterol/stanol-mediated LDL-C lowering is additive to that of statins in dyslipidaemic subjects, equivalent to doubling the dose of statin. The reported 6-9% lowering of plasma triglyceride by 2 g/day in hypertriglyceridaemic patients warrants further evaluation. CONCLUSION Based on LDL-C lowering and the absence of adverse signals, this EAS Consensus Panel concludes that functional foods with plant sterols/stanols may be considered 1) in individuals with high cholesterol levels at intermediate or low global cardiovascular risk who do not qualify for pharmacotherapy, 2) as an adjunct to pharmacologic therapy in high and very high risk patients who fail to achieve LDL-C targets on statins or are statin- intolerant, 3) and in adults and children (>6 years) with familial hypercholesterolaemia, in line with current guidance. However, it must be acknowledged that there are no randomised, controlled clinical trial data with hard end-points to establish clinical benefit from the use of plant sterols or plant stanols.


Journal of Biological Chemistry | 2000

Disruption of the Sterol 27-Hydroxylase Gene in Mice Results in Hepatomegaly and Hypertriglyceridemia REVERSAL BY CHOLIC ACID FEEDING

Joyce J. Repa; Erik G. Lund; Jay D. Horton; Eran Leitersdorf; David W. Russell; John M. Dietschy; Stephen D. Turley

Sterol 27-hydroxylase (CYP27) participates in the conversion of cholesterol to bile acids. We examined lipid metabolism in mice lacking the Cyp27 gene. On normal rodent chow,Cyp27 −/− mice have 40% larger livers, 45% larger adrenals, 2-fold higher hepatic and plasma triacylglycerol concentrations, a 70% higher rate of hepatic fatty acid synthesis, and a 70% increase in the ratio of oleic to stearic acid in the liverversus Cyp27 +/+ controls. InCyp27 −/− mice, cholesterol 7α-hydroxylase activity is increased 5-fold, but bile acid synthesis and pool size are 47 and 27%, respectively, of those in Cyp27 +/+mice. Intestinal cholesterol absorption decreases from 54 to 4% in knockout mice, while fecal neutral sterol excretion increases 2.5-fold. A compensatory 2.5-fold increase in whole body cholesterol synthesis occurs in Cyp27 −/− mice, principally in liver, adrenal, small intestine, lung, and spleen. The mRNA for the cholesterogenic transcription factor sterol regulatory element-binding protein-2 (SREBP-2) and mRNAs for SREBP-2-regulated cholesterol biosynthetic genes are elevated in livers of mutant mice. In addition, the mRNAs encoding the lipogenic transcription factor SREBP-1 and SREBP-1-regulated monounsaturated fatty acid biosynthetic enzymes are also increased. Hepatic synthesis of fatty acids and accumulation of triacylglycerols increases in Cyp27 −/− mice and is associated with hypertriglyceridemia. Cholic acid feeding reverses hepatomegaly and hypertriglyceridemia but not adrenomegaly inCyp27 −/− mice. These studies confirm the importance of CYP27 in bile acid synthesis and they reveal an unexpected function of the enzyme in triacylglycerol metabolism.


The Journal of Neuroscience | 2007

Liver X Receptor Activation Enhances Cholesterol Loss from the Brain, Decreases Neuroinflammation, and Increases Survival of the NPC1 Mouse

Joyce J. Repa; Hao Li; Tamy C. Frank-Cannon; Mark A. Valasek; Stephen D. Turley; Malú G. Tansey; John M. Dietschy

Although cholesterol is a major component of the CNS, there is little information on how or whether a change in sterol flux across the blood–brain barrier might alter neurodegeneration. In Niemann-Pick type C (NPC) disease, a mutation in NPC1 protein causes unesterified cholesterol to accumulate in the lysosomal compartment of every cell, including neurons and glia. Using the murine model of this disease, we used genetic and pharmacologic approaches in an attempt to alter cholesterol homeostasis across the CNS. Genetic deletion of the sterol transporters ATP-binding cassette transporter A1 (ABCA1) and low-density lipoprotein receptor in the NPC1 mouse did not affect sterol balance or longevity. However, deletion of the nuclear receptor, liver X receptor β (LXRβ), had an adverse effect on progression of the disease. We therefore tested the effects of increasing LXR activity by oral administration of a synthetic ligand for this transcription factor. Treatment with this LXR agonist increased cholesterol excretion out of brain from 17 to 49 μg per day, slowed neurodegeneration, and prolonged life. This agonist did not alter synthesis of cholesterol or expression of genes associated with the formation of 24(S)-hydroxycholesterol or neurosteroids such as CYP46A1, 3αHSD, and CYP11A1. However, levels of the sterol transporters ABCA1 and ATP-binding cassette transporter G1 were increased. Concomitantly, markers of neuroinflammation, CD14, MAC1, CD11c, and inducible nitric oxide synthase, were reduced, and microglia reverted from their amoeboid, active form to a ramified, resting configuration. Thus, LXR activation resulted in increased cholesterol excretion from the brain, decreased neuroinflammation, and deactivation of microglia to slow neurodegeneration and extend the lifespan of the NPC1 mouse.


Current Opinion in Lipidology | 2003

Sterol absorption by the small intestine.

Stephen D. Turley; John M. Dietschy

Purpose of review Cholesterol absorption is a selective process in that plant sterols and other non-cholesterol sterols are absorbed poorly or not at all. Recent research on the sterol efflux pumps adenosine triphosphate-binding cassette transporter G5 and adenosine triphosphate-binding cassette transporter G8 has not only provided an explanation for this selectivity, but also, together with the discovery of a new class of cholesterol absorption inhibitor, has yielded new insights into the mechanisms that potentially regulate the flux of cholesterol across the enterocyte. This review discusses these recent developments and their importance to the regulation of whole body cholesterol homeostasis. Recent findings Adenosine triphosphate-binding cassette transporters G5/8 regulate plant sterol absorption and also the secretion into bile of cholesterol and non-cholesterol sterols. Loss of adenosine triphosphate-binding cassette transporter G5/8 function results in sitosterolemia. Ezetimibe, a novel, potent and selective inhibitor of cholesterol absorption which is effective in milligram doses, lowers plasma plant sterol concentrations in sitosterolemic subjects, thus suggesting that this drug might be inhibiting the activity of a putative sterol permease in the brush border membrane of the enterocyte that actively facilitates the uptake of cholesterol as well as other non-cholesterol sterols. Summary Intestinal cholesterol absorption represents a major route for the entry of cholesterol into the bodys miscible pools and therefore can potentially impact the plasma LDL-cholesterol concentration. The combined use of agents that inhibit the absorption and synthesis of cholesterol provides a powerful new approach to the prevention and treatment of atherosclerosis.


Journal of Lipid Research | 2010

Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid

Benny Liu; Charina M. Ramirez; Anna M. Miller; Joyce J. Repa; Stephen D. Turley; John M. Dietschy

A mutation in NPC1 leads to sequestration of unesterified cholesterol in the late endosomal/lysosomal compartment of every cell culminating in the development of pulmonary, hepatic, and neurodegenerative disease. Acute administration of 2-hydroxypropyl-β-cyclodextrin (CYCLO) rapidly overcomes this transport defect in both the 7-day-old pup and 49-day-old mature npc1−/− mouse, even though this compound is cleared from the body and plasma six times faster in the mature mouse than in the neonatal animal. The liberated cholesterol flows into the cytosolic ester pool, suppresses sterol synthesis, down-regulates SREBP2 and its target genes, and reduces expression of macrophage-associated inflammatory genes. These effects are seen in the liver and brain, as well as in peripheral organs like the spleen and kidney. Only the lung appears to be resistant to these effects. Forty-eight h after CYCLO administration to the 49-day-old animals, fecal acidic, but not neutral, sterol output increases, whole-animal cholesterol burden is reduced, and the hepatic and neurological inflammation is ameliorated. However, lifespan is extended only when the CYCLO is administered to the 7-day-old animals. These studies demonstrate that CYCLO administration acutely reverses the cholesterol transport defect seen in the NPC1 mouse at any age, and this reversal allows the sequestered sterol to be excreted from the body as bile acid.

Collaboration


Dive into the Stephen D. Turley's collaboration.

Top Co-Authors

Avatar

John M. Dietschy

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Joyce J. Repa

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Adam M. Lopez

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benny Liu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Charina M. Ramirez

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chonglun Xie

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jen Chieh Chuang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth S. Posey

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bj Horton

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar

C. E. West

Australian National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge