Stephen E. de Laszlo
Merck & Co.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen E. de Laszlo.
Bioorganic & Medicinal Chemistry Letters | 1999
Stephen E. de Laszlo; Candice Hacker; Bing Li; Dooseop Kim; Malcolm Maccoss; Nathan B. Mantlo; James V. Pivnichny; Larry Colwell; Gregory E. Koch; Margaret A. Cascieri; William K. Hagmann
The SAR of 2-pyridyl-3,5-diaryl pyrroles, ligands of the human glucagon receptor and inhibitors of p38 kinase, were investigated. This effort resulted in the identification of 2-(4-pyridyl)-5-(4-chlorophenyl)-3-(5-bromo-2-propyloxyphenyl)pyrr ole 49 (L-168,049), a potent (Kb = 25 nM), selective antagonist of glucagon.
Bioorganic & Medicinal Chemistry Letters | 1998
Stephen E. de Laszlo; Denise M. Visco; Lily Agarwal; Linda Chang; Jayne Chin; Gist Croft; Amy J. Forsyth; Daniel S. Fletcher; Betsy Frantz; Candice Hacker; William A. Hanlon; Coral Harper; Matthew Kostura; Bing Li; Sylvie Luell; Malcolm Maccoss; Nathan B. Mantlo; Edward A. O'Neill; Chad Orevillo; Margaret Pang; Janey Parsons; Anna Rolando; Yousif Sahly; Kelley Sidler; W.Rick Widmer; Stephen J. O'Keefe
Investigation of furans, pyrroles and pyrazolones identified 3-pyridyl-2,5-diaryl-pyrroles as potent, orally bioavailable inhibitors of p38 kinase. 3-(4-pyridyl-2-(4-fluoro-phenyl)-5-(4-methylsulfinylphenyl)-pyrrol e (L-167307) reduces secondary paw swelling in the rat adjuvant arthritis model: ID50 = 7.4 mg/kg/b.i.d.
Bioorganic & Medicinal Chemistry Letters | 2001
Linda L. Chang; Kelly L. Sidler; Margaret A. Cascieri; Stephen E. de Laszlo; Greg Koch; Bing Li; Malcolm Maccoss; Nathan B. Mantlo; Stephen J. O'Keefe; Margaret Pang; Anna Rolando; William K. Hagmann
A modestly active, nonselective triarylimidazole lead was optimized for binding affinity with the human glucagon receptor. This led to the identification of a 2- and/or 4-alkyl or alkyloxy substituent on the imidazole C4-aryl group as a structural determinant for significant enhancement in binding with the glucagon receptor (e.g., 41, IC(50)=0.053 microM) and selectivity (>1000x) over p38MAP kinase in this class of compounds.
Journal of Biological Chemistry | 1999
Margaret A. Cascieri; Gregory E. Koch; Elzbieta Ber; Sharon Sadowski; Donna Louizides; Stephen E. de Laszlo; Candice Hacker; William K. Hagmann; Malcolm Maccoss; Gary G. Chicchi; Pasquale P. Vicario
We have identified a series of potent, orally bioavailable, non-peptidyl, triarylimidazole and triarylpyrrole glucagon receptor antagonists. 2-(4-Pyridyl)-5-(4-chlorophenyl)-3-(5-bromo-2-propyloxyphenyl)pyrrole (L-168,049), a prototypical member of this series, inhibits binding of labeled glucagon to the human glucagon receptor with an IC50 = 3.7 ± 3.4 nm(n = 7) but does not inhibit binding of labeled glucagon-like peptide to the highly homologous human glucagon-like peptide receptor at concentrations up to 10 μm. The binding affinity of L-168,049 for the human glucagon receptor is decreased 24-fold by the inclusion of divalent cations (5 mm). L-168,049 increases the apparent EC50 for glucagon stimulation of adenylyl cyclase in Chinese hamster ovary cells expressing the human glucagon receptor and decreases the maximal glucagon stimulation observed, with aK b (concentration of antagonist that shifts the agonist dose-response 2-fold) of 25 nm. These data suggest that L-168,049 is a noncompetitive antagonist of glucagon action. Inclusion of L-168,049 increases the rate of dissociation of labeled glucagon from the receptor 4-fold, confirming that the compound is a noncompetitive glucagon antagonist. In addition, we have identified two putative transmembrane domain residues, phenylalanine 184 in transmembrane domain 2 and tyrosine 239 in transmembrane domain 3, for which substitution by alanine reduces the affinity of L-168,049 46- and 4.5-fold, respectively. These mutations do not alter the binding of labeled glucagon, suggesting that the binding sites for glucagon and L-168,049 are distinct.
Bioorganic & Medicinal Chemistry Letters | 2001
William K. Hagmann; Philippe L. Durette; Thomas J. Lanza; Nancy J. Kevin; Stephen E. de Laszlo; Ihor E. Kopka; David N. Young; Plato A. Magriotis; Bing Li; Linus S. Lin; Ginger X. Yang; Theodore M. Kamenecka; Linda L. Chang; Jonathan E. Wilson; Malcolm Maccoss; Sander G. Mills; Gail Van Riper; Ermengilda McCauley; Linda A. Egger; Usha Kidambi; Kathryn A. Lyons; Stella H. Vincent; Ralph A. Stearns; Adria Colletti; Johannes Teffera; Sharon Tong; Judy Fenyk-Melody; Karen Owens; Dorothy Levorse; Philip Kim
Directed screening of a carboxylic acid-containing combinatorial library led to the discovery of potent inhibitors of the integrin VLA-4. Subsequent optimization by solid-phase synthesis afforded a series of sulfonylated dipeptide inhibitors with structural components that when combined in a single hybrid molecule gave a sub-nanomolar inhibitor as a lead for medicinal chemistry. Preliminary metabolic studies led to the discovery of substituted biphenyl derivatives with low picomolar activities. SAR and pharmacokinetic characterization of this series are presented.
Bioorganic & Medicinal Chemistry Letters | 1999
Meng-Hsin Chen; Mark G. Steiner; Stephen E. de Laszlo; Arthur A. Patchett; Matt S. Anderson; Sheryl A. Hyland; H. Russell Onishi; Lynn L. Silyer; Christian R.H. Raetz
A series of carbohydroxamido-oxazolidine inhibitors of UDP-3-O-[R-3-hydroxymyristoyl]-GlcNAc deacetylase, the enzyme responsible for the second step in lipid A biosynthesis, was identified. The most potent analog L-161,240 showed an IC50 = 30 nM in the DEACET assay and displayed an MIC of 1-3 microg/mL against wild-type E. coli.
Tetrahedron Letters | 1989
Prasun K. Chakravarty; Stephen E. de Laszlo; Carol S. Sarnella; James P. Sprinnger; Paul F. Schuda
Abstract A synthetic approach to the butyrolactones of (2SR,4SR)-5(S)-(N-Boc)-amino-6-cyclohexyl-4-hydroxy-2-isopropyl hexanoic acid from (L)-phenylalanine and the preparation of the n-butyl amide of the 2(S),4(S),5(S) acid is presented.
Tetrahedron Letters | 2000
Linus S. Lin; Thomas J. Lanza; Stephen E. de Laszlo; Quang Truong; Theodore M. Kamenecka; William K. Hagmann
Abstract Deprotection of Boc groups in the presence of tert -butyl esters was achieved by using concentrated H 2 SO 4 (1.5–3.0 equiv.) in t BuOAc or MeSO 3 H (1.5–3.0 equiv.) in t BuOAc:CH 2 Cl 2 (4:1 v/v). The yields ranged from 70 to 100% for a variety of amino acid and dipeptide substrates.
Bioorganic & Medicinal Chemistry Letters | 2002
Ginger X. Yang; Linda L. Chang; Quang Truong; George Doherty; Plato A. Magriotis; Stephen E. de Laszlo; Bing Li; Malcolm Maccoss; Usha Kidambi; Linda A. Egger; Ermengilda McCauley; Gail Van Riper; Richard A. Mumford; John A. Schmidt; William K. Hagmann
Given the proposed involvement of VLA-4 in inflammatory processes, a program to identify orally active VLA-4 antagonists was initiated. Herein, we report the discovery of a N-tetrahydrofuroyl-(L)-phenylalanine derivative (17) and related analogues as potent VLA-4 antagonists with good oral bioavailability.
Bioorganic & Medicinal Chemistry Letters | 2002
Bing Li; Stephen E. de Laszlo; Theodore M. Kamenecka; Ihor E. Kopka; Philippe L. Durette; Thomas J. Lanza; Malcolm Maccoss; Sharon Tong; Richard A. Mumford; Ermengilda McCauley; Gail Van Riper; John A. Schmidt; William K. Hagmann
A series of potent N-(aralkyl-, arylcycloalkyl-, and heteroaryl-acyl)-4-biphenylalanine VLA-4 antagonists was prepared by rapid analogue methods using solid-phase chemistry. Further optimization led to several highly potent compounds (IC(50) <1 nM). Evaluation of rat pharmacokinetic revealed generally high clearance.