Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen F. Konieczny is active.

Publication


Featured researches published by Stephen F. Konieczny.


Molecular and Cellular Biology | 1997

Muscle LIM protein promotes myogenesis by enhancing the activity of MyoD.

Yanfeng Kong; Matthew J. Flick; Arthur J. Kudla; Stephen F. Konieczny

The muscle LIM protein (MLP) is a muscle-specific LIM-only factor that exhibits a dual subcellular localization, being present in both the nucleus and in the cytoplasm. Overexpression of MLP in C2C12 myoblasts enhances skeletal myogenesis, whereas inhibition of MLP activity blocks terminal differentiation. Thus, MLP functions as a positive developmental regulator, although the mechanism through which MLP promotes terminal differentiation events remains unknown. While examining the distinct roles associated with the nuclear and cytoplasmic forms of MLP, we found that nuclear MLP functions through a physical interaction with the muscle basic helix-loop-helix (bHLH) transcription factors MyoD, MRF4, and myogenin. This interaction is highly specific since MLP does not associate with nonmuscle bHLH proteins E12 or E47 or with the myocyte enhancer factor-2 (MEF2) protein, which acts cooperatively with the myogenic bHLH proteins to promote myogenesis. The first LIM motif in MLP and the highly conserved bHLH region of MyoD are responsible for mediating the association between these muscle-specific factors. MLP also interacts with MyoD-E47 heterodimers, leading to an increase in the DNA-binding activity associated with this active bHLH complex. Although MLP lacks a functional transcription activation domain, we propose that it serves as a cofactor for the myogenic bHLH proteins by increasing their interaction with specific DNA regulatory elements. Thus, the functional complex of MLP-MyoD-E protein reveals a novel mechanism for both initiating and maintaining the myogenic program and suggests a global strategy for how LIM-only proteins may control a variety of developmental pathways.


The FASEB Journal | 1995

Transcription factor families: muscling in on the myogenic program.

David C. Ludolph; Stephen F. Konieczny

Embryonic skeletal muscle development has become a paradigm for understanding the molecular basis of how cell lineages are established and how cells differentiate into specialized structures. Most vertebrate muscles are derived from individual somites that produce two distinct muscle populations: the myotomal muscles that generate the axial and trunk musculature and a second migratory cell population that colonizes regions of the developing limbs. In both instances, muscle differentiation is accompanied by cell cycle arrest, fusion of individual myoblasts into multinucleate myotubes, and the transcriptional activation of muscle‐specific genes. Recent experimental progress has led to greater understanding of the molecular mechanisms that control myogenesis in the embryo. Most of the advances have come from the identification and isolation of regulatory genes that are involved in controlling specific transcriptional events. In particular, the muscle regulatory factor (MRF) and myocyte enhancer factor 2 (MEF2) families have been implicated in establishing the myogenic lineage as well as controlling terminal differentiation. Two additional transcription factors, Pax‐3 and MLP, also appear to play a role in the production of a mature muscle cell. This review focuses on these four vertebrate transcription factor families and discusses the experimental evidence that these factors play important, non‐overlapping roles in regulating skeletal muscle development.—Ludolph, D. C., Konieczny, S. F. Transcription factor families: muscling in on the myogenic program. FASEB J. 9, 1595‐1604


Proceedings of the National Academy of Sciences of the United States of America | 2008

Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.

Nils Habbe; Guanglu Shi; Robert A. Meguid; Volker Fendrich; Farzad Esni; Huiping Chen; Georg Feldmann; Doris A. Stoffers; Stephen F. Konieczny; Steven D. Leach; Anirban Maitra

Pancreatic ductal adenocarcinoma (PDAC) is believed to arise through a multistep model comprised of putative precursor lesions known as pancreatic intraepithelial neoplasia (PanIN). Recent genetically engineered mouse models of PDAC demonstrate a comparable morphologic spectrum of murine PanIN (mPanIN) lesions. The histogenesis of PanIN and PDAC in both mice and men remains controversial. The most faithful genetic models activate an oncogenic KrasG12D knockin allele within the pdx1- or ptf1a/p48-expression domain of the entire pancreatic anlage during development, thus obscuring the putative cell(s)-of-origin from which subsequent mPanIN lesions arise. In our study, activation of this knockin KrasG12D allele in the Elastase- and Mist1-expressing mature acinar compartment of adult mice resulted in the spontaneous induction of mPanIN lesions of all histological grades, although invasive carcinomas per se were not seen. We observed no requirement for concomitant chronic exocrine injury in the induction of mPanIN lesions from the mature acinar cell compartment. The acinar cell derivation of the mPanINs was established through lineage tracing in reporter mice, and by microdissection of lesional tissue demonstrating Cre-mediated recombination events. In contrast to the uniformly penetrant mPanIN phenotype observed following developmental activation of KrasG12D in the Pdx1-expressing progenitor cells, the Pdx1-expressing population in the mature pancreas (predominantly islet β cells) appears to be relatively resistant to the effects of oncogenic Kras. We conclude that in the appropriate genetic context, the differentiated acinar cell compartment in adult mice retains its susceptibility for spontaneous transformation into mPanIN lesions, a finding with potential relevance vis-à-vis the origins of PDAC.


Developmental Biology | 1991

Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development

Timothy J. Hinterberger; David A. Sassoon; Simon J. Rhodes; Stephen F. Konieczny

The muscle regulatory factors MRF4, myogenin, myf-5, and MyoD constitute a family of proteins that can function as muscle-specific transcriptional activators. Although this gene family has been extensively studied, a specific role for each factor during myogenesis remains to be determined. Understanding how these factors function requires a detailed analysis of their expression patterns during development. Toward this goal, we examined the temporal pattern of expression of MRF4 and the other factors in the rat myogenic cell line L6J1-C, in newborn rat primary muscle cell cultures and in fetal and postnatal rat limb muscle. Our results demonstrate that MyoD, myogenin, and myf-5 transcripts accumulate maximally at various stages of myoblast differentiation and decline to low expression levels in adult muscle tissue. In contrast, MRF4 transcript accumulation is restricted to cell cultures containing multinucleate myofibers, and its expression in vivo increases sharply during late fetal muscle development. This level of MRF4 expression is maintained in the adult which, together with decreased expression of the other three muscle regulatory factors, makes MRF4 the predominant factor in adult muscle. In situ hybridization of mouse embryo tissue sections indicates that MRF4 transcripts accumulate in the limb beginning 13.5 days post coitum, which is 2 days later than the initial appearance of myogenin and MyoD transcripts. Hybridization to earlier stages of development reveals, however, that MRF4 mRNA initially is present in the myotomal compartment of the somites, just after myogenin but 2 days prior to MyoD expression. Unlike myogenin and MyoD, MRF4 expression declines in the myotomes at the time that multinucleate axial muscles begin to form in this region, although during later development MRF4 is expressed in the myofibers of axial muscles at levels comparable to those in the limb. Differences in the expression patterns for MRF4, myogenin, myf-5 and MyoD between myotomal and other skeletal muscle development suggest that the relative timing of expression for each muscle regulatory factor may control the distinct phenotypes associated with myotomal myocytes and multinucleate myofibers.


Journal of Cell Biology | 2001

The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity

Christopher L. Pin; J. Michael Rukstalis; Charis L. Johnson; Stephen F. Konieczny

The pancreas is a complex organ that consists of separate endocrine and exocrine cell compartments. Although great strides have been made in identifying regulatory factors responsible for endocrine pancreas formation, the molecular regulatory circuits that control exocrine pancreas properties are just beginning to be elucidated. In an effort to identify genes involved in exocrine pancreas function, we have examined Mist1, a basic helix-loop-helix transcription factor expressed in pancreatic acinar cells. Mist1-null (Mist1KO) mice exhibit extensive disorganization of exocrine tissue and intracellular enzyme activation. The exocrine disorganization is accompanied by increases in p8, RegI/PSP, and PAP1/RegIII gene expression, mimicking the molecular changes observed in pancreatic injury. By 12 m, Mist1KO mice develop lesions that contain cells coexpressing acinar and duct cell markers. Analysis of the factors involved in cholecystokinin (CCK) signaling reveal inappropriate levels of the CCK receptor A and the inositol-1,4,5-trisphosphate receptor 3, suggesting that a functional defect exists in the regulated exocytosis pathway of Mist1KO mice. Based on these observations, we propose that Mist1KO mice represent a new genetic model for chronic pancreas injury and that the Mist1 protein serves as a key regulator of acinar cell function, stability, and identity.


Molecular and Cellular Biology | 1989

Fibroblast growth factor and transforming growth factor beta repress transcription of the myogenic regulatory gene MyoD1.

T B Vaidya; Simon J. Rhodes; Elizabeth J. Taparowsky; Stephen F. Konieczny

In this report, we demonstrate that myogenic cultures inhibited from differentiating by treatment with fibroblast growth factor or transforming growth factor beta show reduced levels of MyoD1 mRNA. Although this repression may contribute to the inhibition of myogenesis by growth factors, additional regulatory pathways must be affected, since inhibition still occurs in cultures engineered to constitutively express MyoD1 mRNA.


Cell | 1988

Myogenic lineage determination and differentiation: Evidence for a regulatory gene pathway

Deborah F. Pinney; Sonia Pearson-White; Stephen F. Konieczny; Keith E. Latham; Charles P. Emerson

Stable myogenic cell lines have been derived at a high frequency by transfection of a cloned multipotential mouse embryo cell line, C3H 10T1/2, with cloned human DNA linked to a selectable neomycin resistance gene. The myogenic phenotype remains linked to neomycin resistance during secondary transfections. Although proliferative in growth conditions, these cell lines maintain the ability to differentiate and express muscle-specific proteins. We conclude that there is a simple genetic basis for myogenic determination and that a single gene, myd, converts 10T1/2 cells to a myoblast lineage. Southern blot analysis demonstrates nonidentity of myd and the MyoD1 gene. Northern blot analysis shows that myd-transfected myogenic lineages express MyoD1 mRNA while parental 10T1/2 cells do not. These results suggest that a dependent regulatory gene pathway mediates myogenic determination and differentiation.


Development | 2007

The maturation of mucus-secreting gastric epithelial progenitors into digestive-enzyme secreting zymogenic cells requires Mist1.

Victoria G. Ramsey; Jason M. Doherty; Christopher C. M. Chen; Thaddeus S. Stappenbeck; Stephen F. Konieczny; Jason C. Mills

Continuous regeneration of digestive enzyme (zymogen)-secreting chief cells is a normal aspect of stomach function that is disrupted in precancerous lesions (e.g. metaplasias, chronic atrophy). The cellular and genetic pathways that underlie zymogenic cell (ZC) differentiation are poorly understood. Here, we describe a gene expression analysis of laser capture microdissection purified gastric cell populations that identified the bHLH transcription factor Mist1 as a potential ZC regulatory factor. Our molecular and ultrastructural analysis of proliferation, migration and differentiation of the gastric unit in Mist1-/- and control mice supports a model whereby wild-type ZC progenitors arise as neck cells in the proliferative (isthmal) zone of the gastric unit and become transitional cells (TCs) with molecular and ultrastructural characteristics of both enzyme-secreting ZCs and mucus-secreting neck cells as they migrate to the neck-base zone interface. Thereafter, they rapidly differentiate into mature ZCs as they enter the base. By contrast, Mist1-/- neck cells differentiate normally, but ZCs in the mature, basal portion of the gastric unit uniformly exhibit multiple apical cytoplasmic structural abnormalities. This defect in terminal ZC differentiation is also associated with markedly increased abundance of TCs, especially in late-stage TCs that predominantly have features of immature ZCs. Thus, we present an in vivo system for analysis of ZC differentiation, present molecular evidence that ZCs differentiate from neck cell progenitors and identify Mist1 as the first gene with a role in this clinically important process.


Molecular and Cellular Biology | 1995

Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis.

Padmavathy S. Naidu; David C. Ludolph; Robert Q. To; Timothy J. Hinterberger; Stephen F. Konieczny

The basic helix-loop-helix muscle regulatory factor (MRF) gene family encodes four distinct muscle-specific transcription factors known as MyoD, myogenin, Myf-5, and MRF4. These proteins represent key regulatory factors that control many aspects of skeletal myogenesis. Although the MRFs often exhibit overlapping functional activities, their distinct expression patterns during embryogenesis suggest that each protein plays a unique role in controlling aspects of muscle development. As a first step in determining how MRF4 gene expression is developmentally regulated, we examined the ability of the MRF4 gene to be expressed in a muscle-specific fashion in vitro. Our studies show that the proximal MRF4 promoter contains sufficient information to direct muscle-specific expression. Located within the proximal promoter are a single MEF2 site and E box that are required for maximum MRF4 expression. Mutation of the MEF2 site or E box severely impairs the ability of this promoter to produce a muscle-specific response. In addition, the MEF2 site and E box function in concert to synergistically activate the MRF4 gene in nonmuscle cells coexpressing MEF2 and myogenin proteins. Thus, the MRF4 promoter is regulated by the MEF2 and basic helix-loop-helix MRF protein family through a cross-regulatory circuitry. Surprisingly, the MRF4 promoter itself is not transactivated by MRF4, suggesting that this MRF gene is not subject to an autoregulatory pathway as previously implied by other studies. Understanding the molecular mechanisms regulating expression of each MRF gene is central to fully understanding how these factors control developmental events.


Molecular and Cellular Biology | 1991

Muscle-specific expression of the troponin I gene requires interactions between helix-loop-helix muscle regulatory factors and ubiquitous transcription factors.

H Lin; Katherine E. Yutzey; Stephen F. Konieczny

The quail fast skeletal troponin I (TnI) gene is a member of the contractile protein gene set and is expressed exclusively in differentiated skeletal muscle cells. TnI gene transcription is controlled by an internal regulatory element (IRE), located within the first intron, that functions as a muscle-specific enhancer. Recent studies have shown that the TnI IRE may interact directly with the muscle regulatory factors MyoD, myogenin, and Myf-5 to produce a muscle-specific expression pattern, since these factors trans-activate cotransfected TnI gene constructs in C3H10T1/2 fibroblasts. In this study, we have examined the protein-IRE interactions that are responsible for transcriptionally activating the TnI gene during skeletal muscle development. We demonstrate that the helix-loop-helix muscle regulatory factors MyoD, myogenin, Myf-5, and MRF4, when complexed with the immunoglobulin enhancer-binding protein E12, interact with identical nucleotides within a muscle regulatory factor-binding site (MRF site) located in the TnI IRE. The nuclear proteins that bind to the MRF site are restricted to skeletal muscle cells, since protein extracts from HeLa, L, and C3H10T1/2 fibroblasts do not contain similar binding activities. Importantly, the TnI MRF site alone is not sufficient to elicit the full enhancer activity associated with the IRE. Instead, two additional regions (site I and site II) are required. The proteins that interact with site I and site II are expressed in both muscle and nonmuscle cell types and by themselves are ineffective in activating TnI gene expression. However, when the MRF site is positioned upstream or downstream of site I and site II, full enhancer activity is restored. We conclude that helix-loop-helix muscle regulatory factors must interact with ubiquitously expressed proteins to generate the active TnI transcription complex that is present in differentiated muscle fibers.

Collaboration


Dive into the Stephen F. Konieczny's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher L. Pin

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason C. Mills

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge