Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen G. Aller is active.

Publication


Featured researches published by Stephen G. Aller.


Science | 2009

Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.

Stephen G. Aller; Jodie Yu; Andrew B. Ward; Yue Weng; Srinivas Chittaboina; Rupeng Zhuo; Patina M. Harrell; Yenphuong T. Trinh; Qinghai Zhang; Ina L. Urbatsch; Geoffrey Chang

P-glycoprotein (P-gp) detoxifies cells by exporting hundreds of chemically unrelated toxins but has been implicated in multidrug resistance (MDR) in the treatment of cancers. Substrate promiscuity is a hallmark of P-gp activity, thus a structural description of poly-specific drug-binding is important for the rational design of anticancer drugs and MDR inhibitors. The x-ray structure of apo P-gp at 3.8 angstroms reveals an internal cavity of ∼6000 angstroms cubed with a 30 angstrom separation of the two nucleotide-binding domains. Two additional P-gp structures with cyclic peptide inhibitors demonstrate distinct drug-binding sites in the internal cavity capable of stereoselectivity that is based on hydrophobic and aromatic interactions. Apo and drug-bound P-gp structures have portals open to the cytoplasm and the inner leaflet of the lipid bilayer for drug entry. The inward-facing conformation represents an initial stage of the transport cycle that is competent for drug binding.


Protein Science | 2014

Refined structures of mouse P-glycoprotein.

Jingzhi Li; Kimberly F. Jaimes; Stephen G. Aller

The recently determined C. elegans P‐glycoprotein (Pgp) structure revealed significant deviations compared to the original mouse Pgp structure, which suggested possible misinterpretations in the latter model. To address this concern, we generated an experimental electron density map from single‐wavelength anomalous dispersion phasing of an original mouse Pgp dataset to 3.8 Å resolution. The map exhibited significantly more detail compared to the original MAD map and revealed several regions of the structure that required de novo model building. The improved drug‐free structure was refined to 3.8 Å resolution with a 9.4 and 8.1% decrease in Rwork and Rfree, respectively, (Rwork = 21.2%, Rfree = 26.6%) and a significant improvement in protein geometry. The improved mouse Pgp model contains ∼95% of residues in the favorable Ramachandran region compared to only 57% for the original model. The registry of six transmembrane helices was corrected, revealing amino acid residues involved in drug binding that were previously unrecognized. Registry shifts (rotations and translations) for three transmembrane (TM)4 and TM5 and the addition of three N‐terminal residues were necessary, and were validated with new mercury labeling and anomalous Fourier density. The corrected position of TM4, which forms the frame of a portal for drug entry, had backbone atoms shifted >6 Å from their original positions. The drug translocation pathway of mouse Pgp is 96% identical to human Pgp and is enriched in aromatic residues that likely play a collective role in allowing a high degree of polyspecific substrate recognition.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Three-dimensional structure of the human copper transporter hCTR1

Christopher J. De Feo; Stephen G. Aller; Gnana S. Siluvai; Ninian J. Blackburn; Vinzenz M. Unger

Copper uptake proteins (CTRs), mediate cellular acquisition of the essential metal copper in all eukaryotes. Here, we report the structure of the human CTR1 protein solved by electron crystallography to an in plane resolution of 7 Å. Reminiscent of the design of traditional ion channels, trimeric hCTR1 creates a pore that stretches across the membrane bilayer at the interface between the subunits. Assignment of the helices identifies the second transmembrane helix as the key element lining the pore, and reveals how functionally important residues on this helix could participate in Cu(I)-coordination during transport. Aligned with and sealing both ends of the pore, extracellular and intracellular domains of hCTR1 appear to provide additional metal binding sites. Consistent with the existence of distinct metal binding sites, we demonstrate that hCTR1 stably binds 2 Cu(I)-ions through 3-coordinate Cu–S bonds, and that mutations in one of these putative binding sites results in a change of coordination chemistry.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria

Thomas C. Marlovits; Winfried Haase; Christian Herrmann; Stephen G. Aller; Vinzenz M. Unger

G proteins are critical for the regulation of membrane protein function and signal transduction. Nevertheless, coupling between G proteins and membrane proteins with multiple membrane-spanning domains has so far been observed only in higher organisms. Here we show that the polytopic membrane protein FeoB, which is essential for Fe(II) uptake in bacteria, contains a guanine-nucleotide-specific nucleotide binding site. We identify the G4-motif, NXXD, responsible for guanine nucleotide specificity, and show that GTP hydrolysis occurs very slowly. In contrast to typical G proteins, the association and dissociation of GDP were found to be faster than for GTP, suggesting that in the absence of additional factors, FeoBs G protein domain may exist mostly in the GTP-bound form. Furthermore, the binding of GTP is required for efficient Fe(II) uptake through the FeoB-dependent system. Notably, even in bacteria, this covalent linkage between a G protein and a polytopic membrane protein appears, to our knowledge, to be unique. These findings raise the intriguing question whether FeoB represents a primordial archetype of G protein-regulated membrane proteins.


Journal of Biological Chemistry | 2004

Eukaryotic CTR Copper Uptake Transporters Require Two Faces of the Third Transmembrane Domain for Helix Packing, Oligomerization, and Function *

Stephen G. Aller; Edward T. Eng; Christopher J. De Feo; Vinzenz M. Unger

Members of the copper uptake transporter (CTR) family from yeast, plants, and mammals including human are required for cellular uptake of the essential metal copper. Based on biochemical data, CTRs have three transmembrane domains and have been shown to oligomerize in the membrane. Among individual members of the family, there is little amino acid sequence identity, raising questions as to how these proteins adopt a common fold, oligomerize, and participate in copper transport. Using site-directed mutagenesis, tryptophan scanning, genetic complementation, subcellular localization, chemical cross-linking, and the yeast unfolded protein response, we demonstrated that at least half of the third transmembrane domain (TM3) plays a vital role in CTR structure and function. The results of our analysis showed that TM3 contains two functionally distinct faces. One face bears a highly conserved Gly-X-X-X-Gly (GG4) motif, which we showed to be essential for CTR oligomerization. Moreover, we showed that steric constraints reach past the GG4-motif itself including amino acid residues that are not conserved throughout the CTR family. A second face of TM3 contains three amino acid positions that, when mutated to tryptophan, cause predominantly abnormal localization but are still partially functional in growth complementation experiments. These mutations cluster on the face opposite to the GG4-bearing face of TM3 where they may mediate interactions with the remaining two transmembrane domains. Taken together, our data support TM3 as being buried within trimeric CTR where it plays an essential role in CTR assembly.


American Journal of Physiology-cell Physiology | 1999

Cloning, characterization, and functional expression of a CNP receptor regulating CFTR in the shark rectal gland.

Stephen G. Aller; Ilise D. Lombardo; Sumeet Bhanot; John N. Forrest

In the shark, C-type natriuretic peptide (CNP) is the only cardiac natriuretic hormone identified and is a potent activator of Cl- secretion in the rectal gland, an epithelial organ of this species that contains cystic fibrosis transmembrane conductance regulator (CFTR) Cl-channels. We have cloned an ancestral CNP receptor (NPR-B) from the shark rectal gland that has an overall amino acid identity to the human homologue of 67%. The shark sequence maintains six extracellular Cys present in other NPR-B but lacks a glycosylation site and a Glu residue previously considered important for CNP binding. When shark NPR-B and human CFTR were coexpressed in Xenopusoocytes, CNP increased the cGMP content of oocytes (EC50 12 nM) and activated CFTR Cl- channels (EC50 8 nM). Oocyte cGMP increased 36-fold (from 0.11 ± 0.03 to 4.03 ± 0.45 pmol/oocyte) and Cl- current increased 37-fold (from -34 ± 14 to -1,226 ± 151 nA) in the presence of 50 nM CNP. These findings identify the specific natriuretic peptide receptor responsible for Cl- secretion in the shark rectal gland and provide the first evidence for activation of CFTR Cl- channels by a cloned NPR-B receptor.


Pflügers Archiv: European Journal of Physiology | 1999

Molecular and functional characterization of s-KCNQ1 potassium channel from rectal gland of Squalus acanthias

Siegfried Waldegger; Bernd Fakler; Markus Bleich; Petra Barth; Anna Hopf; Uwe Schulte; Andreas E. Busch; Stephen G. Aller; John N. Forrest; R. Greger; Florian Lang

Abstract Functional and pharmacological data point to the involvement of KCNQ1/IsK potassium channels in the basolateral potassium conductance of secretory epithelia. In this study, we report the cloning and electrophysiological characterization of the KCNQ1 protein from the salt secretory rectal gland of the spiny dogfish (Squalus acanthias). The S. acanthias KCNQ1 (s-KCNQ1) cDNA was cloned by polymerase chain reaction (PCR) intensive techniques and showed overall sequence similarities with the KCNQ1 potassium channel subunits of Man, mouse and Xenopus laevis of 64, 70 and 77%, respectively, at the translated amino acid level. Analysis of s-KCNQ1 expression on a Northern blot containing RNA from heart, rectal gland, kidney, brain, intestine, testis, liver and gills revealed distinct expression of 7.4-kb s-KCNQ1 transcripts only in rectal gland and heart. Voltage-clamp analysis of s-KCNQ1 expressed in Xenopus oocytes showed pronounced electrophysiological similarities to human and murine KCNQ1 isoforms, with a comparable sensitivity to inhibition by the chromanol 293B. Coexpression of s-KCNQ1 with human-IsK (h-IsK) induced currents with faster activation kinetics and stronger rectification than observed after coexpression of human KCNQ1 with h-IsK, with the voltage threshold of activation shifted to more negative potentials. The low activation threshold at approximately –60 mV in combination with the high expression in rectal gland cells make s-KCNQ1 a potential candidate responsible for the basolateral potassium conductance.


Scientific Reports | 2015

Equilibrated Atomic Models of Outward-Facing P-glycoprotein and Effect of ATP Binding on Structural Dynamics

Lurong Pan; Stephen G. Aller

P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that alternates between inward- and outward-facing conformations to capture and force substrates out of cells like a peristaltic pump. The high degree of similarity in outward-facing structures across evolution of ABC transporters allowed construction of a high-confidence outward-facing Pgp atomic model based on crystal structures of outward-facing Sav1866 and inward-facing Pgp. The model adhered to previous experimentally determined secondary- and tertiary- configurations during all-atom molecular dynamics simulations in the presence or absence of MgATP. Three long lasting (>100 ns) meta-stable states were apparent in the presence of MgATP revealing new insights into alternating access. The two ATP-binding pockets are highly asymmetric resulting in differential control of overall structural dynamics and allosteric regulation of the drug-binding pocket. Equilibrated Pgp has a considerably different electrostatic profile compared to Sav1866 that implicates significant kinetic and thermodynamic differences in transport mechanisms.


Journal of Experimental Zoology | 1997

Cadmium disrupts the signal transduction pathway of both inhibitory and stimulatory receptors regulating chloride secretion in the shark rectal gland

John N. Forrest; Stephen G. Aller; Stephen J. Wood; Martha A. Ratner; John K. Forrest; Grant G. Kelley

The heavy metal cadmium causes nephrotoxicity and alters the transport function of epithelial cells. In the shark rectal gland, chloride secretion is regulated by secretagogues and inhibitors acting through receptors coupled to G proteins and the cyclic AMP-protein kinase A pathway. We examined the effects of cadmium on the response to the inhibitory peptide somatostatin (SRIF), and to the stimulatory secretagogues forskolin and vasoactive intestinal peptide (VIP). In control experiments, SRIF (100 nM) entirely inhibited the chloride secretory response to 10 microM forskolin (maximum chloride secretion with forskolin 1984 +/- 176 microEq/h/g; with forskolin + SRIF 466 +/- 93 microEq/h/g, P < 0.001). Cadmium (25 microM) entirely reversed the inhibitory response to SRIF (chloride secretion 2143 +/- 222 microEq/h/g) and caused an overshoot (2917 +/- 293 microEq/h/g) that exceeded the response to forskolin (P < 0.01). Cadmium also enhanced forskolin-stimulated chloride secretion (2628 +/- 418 vs. 1673 +/- 340 microEq/h/g, P < 0.02) and reversed the declining phase of the forskolin response. Cadmium had a concentration-dependent, biphasic effect on the response to VIP. Cd (10-100 microM) increased both chloride secretion and tissue cyclic AMP content, whereas higher concentrations (1 mM) inhibited chloride secretion and cyclic AMP accumulation. Our findings provide evidence that Cd disrupts the signal transduction pathways of both inhibitory receptors and secretagogues regulating cAMP mediated transport in an intact epithelia. The results are consistent with direct effects of cadmium on adenylate cyclase and/or phosphodiesterase activity in this marine epithelial model.


PLOS ONE | 2014

In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display

Claudia Skamel; Stephen G. Aller; Alain Bopda Waffo

The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets.

Collaboration


Dive into the Stephen G. Aller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher D. Radka

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lawrence J. DeLucas

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Lurong Pan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Chang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge