Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen G. Hardcastle is active.

Publication


Featured researches published by Stephen G. Hardcastle.


Journal of Occupational and Environmental Hygiene | 2011

Ice Cooling Vest on Tolerance for Exercise under Uncompensable Heat Stress

Glen P. Kenny; Andrew R. Schissler; Jill M. Stapleton; Matthew Piamonte; Konrad Binder; Aaron Lynn; Christopher Q. Lan; Stephen G. Hardcastle

This study was conducted to evaluate the effectiveness of a commercial, personal ice cooling vest on tolerance for exercise in hot (35°C), wet (65% relative humidity) conditions with a nuclear biological chemical suit (NBC). On three separate occasions, 10 male volunteers walked on a treadmill at 3 miles per hour and 2% incline while (a) seminude (denoted CON), (b) dressed with a nuclear, biological, chemical (NBC) suit with an ice vest (V) worn under the suit (denoted NBCwV); or (c) dressed with an NBC suit but without an ice vest (V) (denoted NBCwoV). Participants exercised for 120 min or until volitional fatigue, or esophageal temperature reached 39.5°C. Esophageal temperature (Tes), heart rate (HR), thermal sensation, and ratings of perceived exertion were measured. Exercise time was significantly greater in CON compared with both NBCwoV and NBCwV (p < 0.05), whereas Tes, thermal sensation, heart rate, and rate of perceived exertion were lower (p < 0.05). Wearing the ice vest increased exercise time (NBCwoV, 103.6 ± 7.0 min; NBCwV, 115.9 ± 4.1 min) and reduced the level of thermal strain, as evidenced by a lower Tes at end-exercise (NBCwoV, 39.03 ± 0.13°C; NBCwV, 38.74 ± 0.13°C) and reduced thermal sensation (NBCwoV, 6.4 ± 0.4; NBCwV, 4.8 ± 0.6). This was paralleled by a decrease in rate of perceived exertion (NBCwoV, 14.7 ± 1.6; NBCwV, 12.4 ± 1.6) (p < 0.05) and heat rate (NBCwoV, 169 ± 6; NBCwV, 159 ± 7) (p < 0.05). We show that a commercially available cooling vest can significantly reduce the level of thermal strain during work performed in hot environments.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Whole-body heat loss is reduced in older males during short bouts of intermittent exercise

Joanie Larose; Heather E. Wright; Jill M. Stapleton; Ronald J. Sigal; Pierre Boulay; Stephen G. Hardcastle; Glen P. Kenny

Studies in young adults show that a greater proportion of heat is gained shortly following the start of exercise and that temporal changes in whole body heat loss during intermittent exercise have a pronounced effect on body heat storage. The consequences of short-duration intermittent exercise on heat storage with aging are unclear. We compared evaporative heat loss (HE) and changes in body heat content (ΔHb) between young (20-30 yr), middle-aged (40-45 yr), and older males (60-70 yr) of similar body mass and surface area, during successive exercise (4 × 15 min) and recovery periods (4 × 15 min) at a fixed rate of heat production (400 W) and under fixed environmental conditions (35 °C/20% relative humidity). HE was lower in older males vs. young males during each exercise (Ex1: 283 ± 10 vs. 332 ± 11 kJ, Ex2: 334 ± 10 vs. 379 ± 5 kJ, Ex3: 347 ± 11 vs. 392 ± 5 kJ, and Ex4: 347 ± 10 vs. 387 ± 5 kJ, all P < 0.02), whereas HE in middle-aged males was intermediate to that measured in young and older adults (Ex1: 314 ± 13, Ex2: 355 ± 13, Ex3: 371 ± 13, and Ex4: 365 ± 8 kJ). HE was not significantly different between groups during the recovery periods. The net effect over 2 h was a greater ΔHb in older (267 ± 33 kJ; P = 0.016) and middle-aged adults (245 ± 16 kJ; P = 0.073) relative to younger counterparts (164 ± 20 kJ). As a result of a reduced capacity to dissipate heat during exercise, which was not compensated by a sufficiently greater rate of heat loss during recovery, both older and middle-aged males had a progressively greater rate of heat storage compared with young males over 2 h of intermittent exercise.


Journal of Occupational and Environmental Hygiene | 2012

A Field Evaluation of the Physiological Demands of Miners in Canada's Deep Mechanized Mines

Glen P. Kenny; Matthieu Vierula; Joseph Maté; François G. D.Beaulieu; Stephen G. Hardcastle; Francis D. Reardon

This study was conducted to evaluate the physical/mechanical characteristics of typical selected mining tasks and the energy expenditure required for their performance. The study comprised two phases designed to monitor and record the typical activities that miners perform and to measure the metabolic energy expenditure and thermal responses during the performance of these activities under a non-heat stress environmental condition (ambient air temperature of 25.8°C and 61% relative humidity with a wet bulb globe temperature (WBGT) of 22.0°C). Six common mining jobs were evaluated in 36 miners: (1) production drilling (jumbo drill) (n = 3), (2) production ore transportation (load-haul dump vehicle) (n = 4), (3) manual bolting (n = 9), (4) manual shotcrete (wet/dry) (n = 3), (5) general services (n = 8) and, (6) conventional mining (long-hole drill) (n = 9). The time/motion analysis involved the on-site monitoring, video recording, and mechanical characterization of the different jobs. During the second trial, continuous measurement of oxygen consumption was performed with a portable metabolic system. Core (ingestible capsule) and skin temperatures (dermal patches) were recorded continuously using a wireless integrated physiological monitoring system. We found that general services and manual bolting demonstrated the highest mean energy expenditure (331 ± 98 and 290 ± 95 W, respectively) as well as the highest peak work rates (513 and 529 W, respectively). In contrast, the lowest mean rate of energy expenditure was measured in conventional mining (221 ± 44 W) and manual shotcrete (187 ± 77 W) with a corresponding peak rate of 295 and 276 W, respectively. The low rate of energy expenditure recorded for manual shotcrete was paralleled by the lowest work to rest ratio (1.8:1). While we found that production drilling had a moderate rate of energy expenditure (271 ± 11 W), it was associated with the highest work to rest ratio (6.7:1) Despite the large inter-variability in energy expenditure and work intervals among jobs, only small differences in average core temperature (average ranged between 37.20 ± 0.22 to 37.42 ± 0.18°C) were measured. We found a high level of variability in the duration and intensity of tasks performed within each mining job. This was paralleled by a large variation in the work to rest allocation and mean energy expenditure over the course of the work shift.


Medicine and Science in Sports and Exercise | 2009

Heat Balance and Cumulative Heat Storage during Intermittent Bouts of Exercise

Glenn P. Kenny; Lucy E. Dorman; Paul Webb; Michel B. Ducharme; Daniel Gagnon; Francis D. Reardon; Stephen G. Hardcastle; Ollie Jay

PURPOSE The aim of this study was to investigate heat balance during thermal transients caused by successive exercise bouts. Whole-body heat loss (H x L) and changes in body heat content (Delta Hb) were measured using simultaneous direct whole-body and indirect calorimetry. METHODS Ten participants performed three successive bouts of 30-min cycling (Ex1, Ex2, and Ex3) at a constant rate of heat production of approximately 500 W, each separated by 15-min rest (R1, R2, and R3) at 30 degrees C. RESULTS Despite identical rates of heat production during exercise, the time constant (tau) of the exponential increase in H x L was greater in Ex1 (tau = 12.3 +/- 2.3 min) relative to both Ex2 (tau = 7.2 +/- 1.6 min) and Ex3 (tau = 7.1 +/- 1.6 min) (P < 0.05). Delta Hb during Ex1 (256 +/- 76 kJ) was greater than during Ex2 (135 +/- 60 kJ) and Ex3 (124 +/- 78 kJ) (P < 0.05). During recovery bouts, heat production was the same, and the tau of the exponential decrease in H L was the same during R1 (tau = 6.5 +/- 1.1 min), R2 (tau = 5.9 +/- 1.3 min), and R3 (tau = 6.0 +/- 1.2 min). Delta Hb during R1 (-82 +/- 48 kJ), R2 (-91 +/- 48 kJ), and R3 (-88 +/- 54 kJ) were the same. The cumulative Delta Hb was consequently greater at the end of Ex2 and Ex3 relative to the end of Ex1 (P < 0.05). Likewise, cumulative Delta Hb was greater at the end of R2 and R3 relative to R1 (P < 0.05). CONCLUSION The proportional decrease in the amount of heat stored in the successive exercise bouts is the result of an enhanced rate of heat dissipation during exercise and not due to a higher rate of heat loss in the recovery period. Despite a greater thermal drive with repeated exercise, the decline in the rate of total heat loss during successive recovery bouts was the same.


Journal of Applied Physiology | 2014

Age-related differences in heat loss capacity occur under both dry and humid heat stress conditions

Joanie Larose; Pierre Boulay; Heather E. Wright-Beatty; Ronald J. Sigal; Stephen G. Hardcastle; Glen P. Kenny

This study examined the progression of impairments in heat dissipation as a function of age and environmental conditions. Sixty men (n = 12 per group; 20-30, 40-44, 45-49, 50-54, and 55-70 yr) performed four intermittent exercise/recovery cycles for a duration of 2 h in dry (35°C, 20% relative humidity) and humid (35°C, 60% relative humidity) conditions. Evaporative heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was measured as the temporal summation of heat production and heat loss during the sessions. Evaporative heat loss was reduced during exercise in the humid vs. dry condition in age groups 20-30 (-17%), 40-44 (-18%), 45-49 (-21%), 50-54 (-25%), and 55-70 yr (-20%). HE fell short of being significantly different between groups in the dry condition, but was greater in age group 20-30 yr (279 ± 10 W) compared with age groups 45-49 (248 ± 8 W), 50-54 (242 ± 6 W), and 55-70 yr (240 ± 7 W) in the humid condition. As a result of a reduced rate of heat dissipation predominantly during exercise, age groups 40-70 yr stored between 60-85 and 13-38% more heat than age group 20-30 yr in the dry and humid conditions, respectively. These age-related differences in heat dissipation and heat storage were not paralleled by significant differences in local sweating and skin blood flow, or by differences in core temperature between groups. From a whole body perspective, combined heat and humidity impeded heat dissipation to a similar extent across age groups, but, more importantly, intermittent exercise in dry and humid heat stress conditions created a greater thermoregulatory challenge for middle-aged and older adults.


Medicine and Science in Sports and Exercise | 2013

Do older females store more heat than younger females during exercise in the heat

Joanie Larose; Heather E. Wright; Ronald J. Sigal; Pierre Boulay; Stephen G. Hardcastle; Glen P. Kenny

INTRODUCTION Aging is associated with a reduction in the bodys capacity to dissipate heat. To date, few studies have examined age-related changes in thermoregulatory function during short exercise periods in the heat in older females. PURPOSE This study aimed to investigate the effects of age on whole-body heat loss during intermittent exercise in the heat in young and older females. METHODS Direct and indirect calorimetry was used to measure whole-body evaporative heat loss (EHL), change in body heat content, and metabolic heat production. Eleven young (Y) (mean ± SD age = 24 ± 4 yr) and 13 older (O) (51 ± 8 yr) females matched for body surface area (Y, 1.72 ± 0.15; O, 1.75 ± 0.12 m²) and fitness (V(˙)O(2max)) (Y, 36.7 ± 6.8 mL O₂·kg⁻¹·min⁻¹; O, 33.8 ± 8.0 mL O₂·kg⁻¹·min⁻¹) performed four bouts of 15-min cycling (Ex1, Ex2, Ex3, and Ex4) at a constant rate of heat production (300 W) at 35°C and 20% relative humidity. Each exercise bout was separated by 15 min of rest. RESULTS EHL was reduced in O compared with Y during Ex1 (O, 199 ± 6 W; Y, 240 ± 9 W; P = 0.001), Ex2 (O, 238 ± 4 W; Y, 261 ± 9 W, P = 0.023), and Ex3 (O, 249 ± 4 W; Y, 274 ± 11 W; P = 0.040). EHL was not different between groups during Ex4 or during the recovery periods. Older females had a greater change in body heat content compared with young females (O, 270 ± 20 kJ; Y, 166 ± 20 kJ; P = 0.001). CONCLUSION These findings suggest that older females have a lower capacity for whole-body EHL compared with younger females during short intermittent exercise in the heat performed at a fixed rate of metabolic heat production.


Medicine and Science in Sports and Exercise | 2015

Whole-Body Heat Exchange during Heat Acclimation and Its Decay.

Martin P. Poirier; Daniel Gagnon; Brian J. Friesen; Stephen G. Hardcastle; Glen P. Kenny

PURPOSE The purpose of this study was to quantify how much whole-body heat loss increases during heat acclimation and the decay in these improvements after heat acclimation. METHODS Ten males underwent a 14-d heat acclimation protocol that consisted of 90 min of cycling in the heat (40°C, 20% relative humidity) at approximately 50% of maximum oxygen consumption. Before (day 0), during (day 7), and at the end (day 14) of the heat acclimation protocol as well as 7 and 14 d after heat acclimation (days 21 and 28), whole-body heat exchange (evaporative and dry) was measured using direct calorimetry during three bouts of 30-min exercise at 300 (Ex1), 350 (Ex2), and 400 W·m (Ex3), each separated by 10 and 20 min of recovery, respectively, at 35°C and 16% relative humidity. Concurrent measurements of metabolic heat production (indirect calorimetry) allowed for the direct calculation of change in body heat content (ΔHb). RESULTS After accounting for an increase in net dry heat gain, increases in whole-body evaporative heat loss were evident for Ex2 and Ex3 on day 7 (Ex2, 4.9 ± 5.6%; Ex3, 9.0 ± 6.0%; both P ≤ 0.05) and all heat loads on day 14 (Ex1, 7.6 ± 8.3%; Ex2, 7.7 ± 5.5%; Ex3, 11.2 ± 4.6%; all P ≤ 0.05) relative to day 0 (Ex1, 494 ± 27 W; Ex2, 583 ± 21 W; Ex3, 622 ± 36 W). As a result, a lower cumulative ΔHb was measured on day 7 (-18 ± 8%, P ≤ 0.001) and day 14 (-26 ± 10%, P ≤ 0.001) compared with that measured on day 0 (1062 ± 123 kJ). Most of these improvements were retained after 2 wk of nonexposure to the heat. CONCLUSIONS This is the first study to quantify how much 14 d of heat acclimation can increase whole-body evaporative heat loss, which can improve by as much as approximately 11%.


Medicine and Science in Sports and Exercise | 2016

Do the Threshold Limit Values for Work in Hot Conditions Adequately Protect Workers

Robert D. Meade; Martin P. Poirier; Andreas D. Flouris; Stephen G. Hardcastle; Glen P. Kenny

PURPOSE We evaluated core temperature responses and the change in body heat content (ΔHb) during work performed according to the ACGIH threshold limit values (TLV) for heat stress, which are designed to ensure a stable core temperature that does not exceed 38.0°C. METHODS Nine young males performed a 120-min work protocol consisting of cycling at a fixed rate of heat production (360 W). On the basis of the TLV, each protocol consisted of a different work-rest (WR) allocation performed in different wet-bulb globe temperatures (WBGT). The first was 120 min of continuous (CON) cycling at 28.0°C WBGT (CON[28.0°C]). The remaining three protocols were intermittent work bouts (15-min duration) performed at various WR and WBGT: (i) WR of 3:1 at 29.0°C (WR3:1[29.0°C]), (ii) WR of 1:1 at 30.0°C (WR1:1[30.0°C]), and (iii) WR of 1:3 at 31.5°C (WR1:3[31.5°C]) (total exercise time: 90, 60, and 30 min, respectively). The change in rectal (ΔTre) and mean body temperature (ΔTb) was evaluated with thermometry. ΔHb was determined via direct calorimetry and also used to calculate ΔTb. RESULTS Although average rectal temperature did not exceed 38.0°C, heat balance was not achieved during exercise in any work protocol (i.e., rate of ΔTre > 0°C·min; all P values ≤ 0.02). Consequently, it was projected that if work was extended to 4 h, the distribution of participant core temperatures higher and lower than 38.0°C would be statistically similar (all P values ≥ 0.10). Furthermore, ΔHb was similar between protocols (P = 0.70). However, a greater ΔTb was observed with calorimetry relative to thermometry in WR3:1[29.0°C] (P = 0.03), WR1:1[30.0°C] (P = 0.02), and WR1:3[31.5°C] (P < 0.01) but not CON[28.0°C] (P = 0.32). CONCLUSION The current study demonstrated that heat balance was not achieved and ΔTb and ΔHb were inconsistent, suggesting that the TLV may not adequately protect workers during work in hot conditions.


Journal of Occupational and Environmental Hygiene | 2012

Cortisol and Interleukin-6 Responses During Intermittent Exercise in Two Different Hot Environments with Equivalent WBGT

Heather E. Wright; Tom M. McLellan; Jill M. Stapleton; Stephen G. Hardcastle; Glen P. Kenny

Blood marker concentrations such as cortisol (COR) and interleukin (IL)-6 are commonly used to evaluate the physiological strain associated with work in the heat. It is unclear, however, if hot environments of an equivalent thermal stress, as defined by a similar wet bulb globe temperature (WBGT), result in similar response patterns. This study examined markers of neuroendocrine (COR) and immune (IL-6) responses, as well as the cardiovascular and thermal responses, relative to changes in body heat content measured by whole-body direct calorimetry during work in two different hot environments with equivalent WBGT. Eight males performed a 2-hr heavy intermittent exercise protocol (six 15-min bouts of cycling at a constant rate of metabolic heat production (360W) interspersed by 5-min rest periods) in Hot/Dry (46°C, 10% relative humidity [RH]) and Warm/Humid (33°C, 60% RH) conditions (WBGT ∼ 29°C). Whole-body evaporative and dry heat exchange, change in body heat content (ΔHb), rectal temperature (Tre), and heart rate were measured continuously. Venous blood was obtained at rest (PRE) and the end of each exercise bout for the measurement of changes in plasma volume (PV), plasma protein (an estimate of plasma water changes), COR, and IL-6. Ratings of perceived exertion and thermal sensation were measured during the last minute of each exercise bout. No differences existed for ΔHb, heart rate, Tre,%ΔPV, plasma protein concentration, perceptual strain (thermal sensation, perceived exertion), and COR between the Hot/Dry and Warm/Humid conditions. IL-6 exhibited an interaction effect (p = 0.041), such that greater increases were observed in the Hot/Dry (Δ = 1.61 pg·mL−1) compared with the Warm/Humid (Δ = 0.64 pg·mL−1) environment. These findings indicate that work performed in two different hot environments with equivalent WBGT resulted in similar levels of thermal, cardiovascular, and perceptual strain, which support the use of the WBGT stress index. However, the greater IL-6 response in the Hot/Dry requires further research to elucidate the effects of different hot environments and work intensities.


Journal of Occupational and Environmental Hygiene | 2011

The influence of activewear worn under standard work coveralls on whole-body heat loss.

Jill M. Stapleton; Stephen G. Hardcastle; Glen P. Kenny

This study evaluated the influence of activewear undergarments worn under the standard mining coveralls on whole-body heat exchange and change in body heat content during work in the heat. Each participant performed 60 min of cycling at a constant rate of heat production of 400 W followed by 60 min of recovery in a whole-body calorimeter regulated at 40°C and 15% relative humidity donning one of the four clothing ensembles: (1) cotton underwear and shorts only (Control, CON); (2) Activewear only (ACT); (3) Coveralls+Cotton undergarments (COV+COT); or (4) Coveralls+Activewear undergarments (COV+ACT). In the latter two conditions a hard hat with earmuffs, gloves, and socks with closed toe shoes were worn. We observed that both COV+ COT and COV+ACT resulted in a similar mean (±SE) change in body heat content, which was significantly greater compared with the CON and ACT during exercise, suggesting that the rate of thermal strain was elevated to a similar degree in both coverall conditions (CON: 245 ± 32 kJ; ACT: 260 ± 29 kJ; COV+COT: 428 ± 36 kJ; COV+ACT: 466 ± 15 kJ; p < 0.001). During recovery, the negative change in body heat content was greater for both COV+COT and COV+ACT compared with the CON and ACT but similar between COV+COT and COV+ACT due to the greater amount of heat stored during exercise (CON: −83 ± 16 kJ; ACT: −104 ± 33 kJ; COV+COT: −198 ± 30 kJ; COV+ACT: −145 ± 12 kJ; p = 0.048). Core temperatures and heart rate were also significantly elevated for the COV+COT and COV+ACT compared with the CON and ACT conditions during and following exercise (p < 0.05). These results suggest that while activewear undergarments are not detrimental, they provide no thermoregulatory benefit when replacing the cotton undergarment worn under the standard coverall during work in the heat.

Collaboration


Dive into the Stephen G. Hardcastle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Boulay

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge