Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen G. Young is active.

Publication


Featured researches published by Stephen G. Young.


Journal of Clinical Investigation | 1999

MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B

Jennifa Gosling; Sarah Slaymaker; Long Gu; Susan Tseng; Constance H. Zlot; Stephen G. Young; Barrett J. Rollins; Israel F. Charo

The earliest recognizable atherosclerotic lesions are fatty streaks composed of lipid-laden macrophages (foam cells). Circulating monocytes are the precursors of these foam cells, but the molecular mechanisms that govern macrophage trafficking through the vessel wall are poorly understood. Monocyte chemoattractant protein-1 (MCP-1), a member of the chemokine (chemotactic cytokine) family, is a potent monocyte agonist that is upregulated by oxidized lipids. Recent studies in hypercholesterolemic mice lacking apo E or the low-density lipoprotein receptor have suggested a role for MCP-1 in monocyte recruitment to early atherosclerotic lesions. To determine if MCP-1 is critically involved in atherogenesis in the setting of elevated physiological plasma cholesterol levels, we deleted the MCP-1 gene in transgenic mice expressing human apo B. Here we report that the absence of MCP-1 provides dramatic protection from macrophage recruitment and atherosclerotic lesion formation in apo B transgenic mice, without altering lipoprotein metabolism. Taken together with the results of earlier studies, these data provide compelling evidence that MCP-1 plays a critical role in the initiation of atherosclerosis.


Nature Genetics | 2004

The Knockout Mouse Project

Christopher P. Austin; James F. Battey; Allan Bradley; Maja Bucan; Mario R. Capecchi; Francis S. Collins; William F. Dove; Geoffrey M. Duyk; Susan M. Dymecki; Janan T. Eppig; Franziska Grieder; Nathaniel Heintz; Geoff Hicks; Thomas R. Insel; Alexandra L. Joyner; Beverly H. Koller; K. C. Kent Lloyd; Terry Magnuson; Mark Moore; Andras Nagy; Jonathan D. Pollock; Allen D. Roses; Arthur T. Sands; Brian Seed; William C. Skarnes; Jay Snoddy; Philippe Soriano; D. Stewart; Francis Stewart; Bruce Stillman

Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect

Martin O. Bergo; Bryant J. Gavino; Jed Ross; Walter K. Schmidt; Christine Hong; Lonnie V. Kendall; Andreas Mohr; Margarita Meta; Harry K. Genant; Yebin Jiang; Erik R. Wisner; Nicholas van Bruggen; Richard A. D. Carano; Susan Michaelis; Stephen M. Griffey; Stephen G. Young

Zmpste24 is an integral membrane metalloproteinase of the endoplasmic reticulum. Biochemical studies of tissues from Zmpste24-deficient mice (Zmpste24−/−) have indicated a role for Zmpste24 in the processing of CAAX-type prenylated proteins. Here, we report the pathologic consequences of Zmpste24 deficiency in mice. Zmpste24−/− mice gain weight slowly, appear malnourished, and exhibit progressive hair loss. The most striking pathologic phenotype is multiple spontaneous bone fractures—akin to those occurring in mouse models of osteogenesis imperfecta. Cortical and trabecular bone volumes are significantly reduced in Zmpste24−/− mice. Zmpste24−/− mice also manifested muscle weakness in the lower and upper extremities, resembling mice lacking the farnesylated CAAX protein prelamin A. Prelamin A processing was defective both in fibroblasts lacking Zmpste24 and in fibroblasts lacking the CAAX carboxyl methyltransferase Icmt but was normal in fibroblasts lacking the CAAX endoprotease Rce1. Muscle weakness in Zmpste24−/− mice can be reasonably ascribed to defective processing of prelamin A, but the brittle bone phenotype suggests a broader role for Zmpste24 in mammalian biology.


Current Biology | 2007

ESCRT-III Dysfunction Causes Autophagosome Accumulation and Neurodegeneration

Jin-A Lee; Anne P. Beigneux; S. Tariq Ahmad; Stephen G. Young; Fen-Biao Gao

Defects in the endosomal-lysosomal pathway have been implicated in a number of neurodegenerative disorders. A key step in the endocytic regulation of transmembrane proteins occurs in a subset of late-endosomal compartments known as multivesicular bodies (MVBs), whose formation is controlled by endosomal sorting complex required for transport (ESCRT). The roles of ESCRT in dendritic maintenance and neurodegeneration remain unknown. Here, we show that mSnf7-2, a key component of ESCRT-III, is highly expressed in most mammalian neurons. Loss of mSnf7-2 in mature cortical neurons caused retraction of dendrites and neuronal cell loss. mSnf7-2 binds to CHMP2B, another ESCRT-III subunit, in which a rare dominant mutation is associated with frontotemporal dementia linked to chromosome 3 (FTD3). Ectopic expression of the mutant protein CHMP2B(Intron5) also caused dendritic retraction prior to neurodegeneration. CHMP2B(Intron5) was associated more avidly than CHMP2B(WT) with mSnf7-2, resulting in sequestration of mSnf7-2 in ubiquitin-positive late-endosomal vesicles in cortical neurons. Moreover, loss of mSnf7-2 or CHMP2B(Intron5) expression caused the accumulation of autophagosomes in cortical neurons and flies. These findings indicate that ESCRT-III dysfunction is associated with the autophagy pathway, suggesting a novel neurodegeneration mechanism that may have important implications for understanding FTD and other age-dependent neurodegenerative diseases.


Circulation | 1990

Recent progress in understanding apolipoprotein B.

Stephen G. Young

For the past 5 years, investigators from many different laboratories have contributed to a greatly increased understanding of two very important lipid-carrying proteins in plasma--apo B-100 and apo B-48. Apo B-100, an extremely large protein composed of 4,536 amino acids, is synthesized by the liver and is crucial for the assembly of triglyceride-rich VLDL particles. Apo B-100 is virtually the only protein of LDL, a cholesteryl ester-enriched class of lipoproteins that are metabolic products of VLDL. The apo B-100 of LDL serves as a ligand for the LDL receptor-mediated uptake of LDL particles by the liver and extrahepatic tissues. The LDL receptor-binding region of apo B-100 is located in the carboxyterminal portion of the molecule, whereas its lipid-binding regions appear to be broadly dispersed throughout its length. Apo B-48 contains the amino-terminal 2,152 amino acids of apo B-100 and is produced by the intestine as a result of editing of a single nucleotide of the apo B mRNA, which changes the codon specifying apo B-100 amino acid 2,153 to a premature stop codon. Apo B-48 has an obligatory structural role in the formation of chylomicrons; therefore, its synthesis is essential for absorption of dietary fats and fat-soluble vitamins. Both apo B-48 and apo B-100 are encoded on chromosome 2 by a single gene that contains 29 exons and 28 introns. An elevated level of apo B-100 in the plasma is a potent risk factor for developing premature atherosclerotic disease. In the past 3 years, many different apo B gene mutations that affect the concentrations of both apo B and cholesterol in the plasma have been characterized. A missense mutation in the codon for apo B-100 amino aid 3,500 is associated with hypercholesterolemia. This mutation results in poor binding of apo B-100 to the LDL receptor, thereby causing the cholesteryl ester-enriched LDL particles to accumulate in the plasma. This disorder is called familial defective apo B-100, and it is probably a cause of premature atherosclerotic disease. Familial hypobetalipoproteinemia is a condition associated with abnormally low levels of apo B and cholesterol; affected individuals may actually have a reduced risk of atherosclerotic disease.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Biological Chemistry | 2006

Lamins A and C but Not Lamin B1 Regulate Nuclear Mechanics

Jan Lammerding; Loren G. Fong; Julie Y. Ji; Karen Reue; Colin L. Stewart; Stephen G. Young; Richard T. Lee

Mutations in the nuclear envelope proteins lamins A and C cause a broad variety of human diseases, including Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy, and Hutchinson-Gilford progeria syndrome. Cells lacking lamins A and C have reduced nuclear stiffness and increased nuclear fragility, leading to increased cell death under mechanical strain and suggesting a potential mechanism for disease. Here, we investigated the contribution of major lamin subtypes (lamins A, C, and B1) to nuclear mechanics by analyzing nuclear shape, nuclear dynamics over time, nuclear deformations under strain, and cell viability under prolonged mechanical stimulation in cells lacking both lamins A and C, cells lacking only lamin A (i.e. “lamin C-only” cells), cells lacking wild-type lamin B1, and wild-type cells. Lamin A/C-deficient cells exhibited increased numbers of misshapen nuclei and had severely reduced nuclear stiffness and decreased cell viability under strain. Lamin C-only cells had slightly abnormal nuclear shape and mildly reduced nuclear stiffness but no decrease in cell viability under strain. Interestingly, lamin B1-deficient cells exhibited normal nuclear mechanics despite having a significantly increased frequency of nuclear blebs. Our study indicates that lamins A and C are important contributors to the mechanical stiffness of nuclei, whereas lamin B1 contributes to nuclear integrity but not stiffness.


Science | 2006

A Protein Farnesyltransferase Inhibitor Ameliorates Disease in a Mouse Model of Progeria

Loren G. Fong; David Frost; Margarita Meta; Xin Qiao; Shao H. Yang; Catherine Coffinier; Stephen G. Young

Progerias are rare genetic diseases characterized by premature aging. Several progeroid disorders are caused by mutations that lead to the accumulation of a lipid-modified (farnesylated) form of prelamin A, a protein that contributes to the structural scaffolding for the cell nucleus. In progeria, the accumulation of farnesyl–prelamin A disrupts this scaffolding, leading to misshapen nuclei. Previous studies have shown that farnesyltransferase inhibitors (FTIs) reverse this cellular abnormality. We tested the efficacy of an FTI (ABT-100) in Zmpste24-deficient mice, a mouse model of progeria. The FTI-treated mice exhibited improved body weight, grip strength, bone integrity, and percent survival at 20 weeks of age. These results suggest that FTIs may have beneficial effects in humans with progeria.


Journal of Clinical Investigation | 1993

Transgenic mice expressing high plasma concentrations of human apolipoprotein B100 and lipoprotein(a).

MacRae F. Linton; Robert V. Farese; Giulia Chiesa; David S. Grass; Peter Chin; Robert E. Hammer; Helen H. Hobbs; Stephen G. Young

The B apolipoproteins, apo-B48 and apo-B100, are key structural proteins in those classes of lipoproteins considered to be atherogenic [e.g., chylomicron remnants, beta-VLDL, LDL, oxidized LDL, and Lp(a)]. Here we describe the development of transgenic mice expressing high levels of human apo-B48 and apo-B100. A 79.5-kb human genomic DNA fragment containing the entire human apo-B gene was isolated from a P1 bacteriophage library and microinjected into fertilized mouse eggs. 16 transgenic founders expressing human apo-B were generated, and the animals with the highest expression had plasma apo-B100 levels nearly as high as those of normolipidemic humans (approximately 50 mg/dl). The human apo-B100 in transgenic mouse plasma was present largely in lipoproteins of the LDL class as shown by agarose gel electrophoresis, chromatography on a Superose 6 column, and density gradient ultracentrifugation. When the human apo-B transgenic founders were crossed with transgenic mice expressing human apo(a), the offspring that expressed both transgenes had high plasma levels of human Lp(a). Both the human apo-B and Lp(a) transgenic mice will be valuable resources for studying apo-B metabolism and the role of apo-B and Lp(a) in atherosclerosis.


Nucleic Acids Research | 2003

BayGenomics: a resource of insertional mutations in mouse embryonic stem cells

Doug Stryke; Michiko Kawamoto; Conrad C. Huang; Susan J. Johns; Leslie A. King; Courtney A. Harper; Elaine C. Meng; Roy E. Lee; Alice Yee; Larry L'Italien; Pao-Tien Chuang; Stephen G. Young; William C. Skarnes; Patricia C. Babbitt; Thomas E. Ferrin

The BayGenomics gene-trap resource (http://baygenomics.ucsf.edu) provides researchers with access to thousands of mouse embryonic stem (ES) cell lines harboring characterized insertional mutations in both known and novel genes. Each cell line contains an insertional mutation in a specific gene. The identity of the gene that has been interrupted can be determined from a DNA sequence tag. Approximately 75% of our cell lines contain insertional mutations in known mouse genes or genes that share strong sequence similarities with genes that have been identified in other organisms. These cell lines readily transmit the mutation to the germline of mice and many mutant lines of mice have already been generated from this resource. BayGenomics provides facile access to our entire database, including sequence tags for each mutant ES cell line, through the World Wide Web. Investigators can browse our resource, search for specific entries, download any portion of our database and BLAST sequences of interest against our entire set of cell line sequence tags. They can then obtain the mutant ES cell line for the purpose of generating knockout mice.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1995

Increased Autoantibody Titers Against Epitopes of Oxidized LDL in LDL Receptor–Deficient Mice With Increased Atherosclerosis

Wulf Palinski; Rajendra K. Tangirala; Elizabeth Miller; Stephen G. Young; J L Witztum

Increasing evidence indicates that immune processes modulate atherogenesis. Oxidized LDL (Ox-LDL) is immunogenic, and autoantibodies recognizing epitopes of Ox-LDL have been described in plasma and in atherosclerotic lesions of several species. To determine whether the titer of such autoantibodies correlates with the extent of atherosclerosis, we followed the development of antibodies against malondialdehyde-lysine, an epitope of Ox-LDL, in two groups of LDL receptor-deficient mice for 6 months. One group was fed an atherogenic diet (21% fat and 0.15% cholesterol) that resulted in marked hypercholesterolemia and extensive aortic atherosclerosis; the other group was fed regular rodent chow (4% fat) that did not alter plasma cholesterol levels and induced minimal atherosclerosis. Autoantibody titers significantly increased over time in the group on the atherogenic diet, whereas they remained constant in the chow-fed group. When data from both groups were pooled, a significant correlation was found between the autoantibody titers and the extent of atherosclerosis (r = .61, P < .01). Autoantibody titers also correlated with plasma cholesterol levels (r = .48, P < .05). These results suggest that the rise in autoantibody titers to an epitope of Ox-LDL in this murine model is partially determined by the extent of atherosclerosis but could also be influenced by the degree of hypercholesterolemia or other factors that may influence lipid peroxidation.

Collaboration


Dive into the Stephen G. Young's collaboration.

Top Co-Authors

Avatar

Loren G. Fong

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shao H. Yang

University of California

View shared research outputs
Top Co-Authors

Avatar

Yiping Tu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Gin

University of California

View shared research outputs
Top Co-Authors

Avatar

Karen Reue

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge