Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen H. Davis is active.

Publication


Featured researches published by Stephen H. Davis.


Journal of Fluid Mechanics | 1974

On the motion of a fluid-fluid interface along a solid surface

B V Elizabeth Dussan; Stephen H. Davis

A fluid-fluid interface that joins a solid surface forms a common line. If the common line moves along the solid, a mutual displacement process is involved and is studied here. Some simple experiments motivate the formulation of the basic assumption of the analysis. The basic assumption is a formalization of the idea that the fluid-fluid interface rolls on or unrolls off the solid. This forms an axiom for the mostly kinematical analysis that follows. The predictions are tested through a series of qualitative experiments. The role of the no-slip boundary condition at the solid surface is discussed.


Journal of Fluid Mechanics | 1988

Nonlinear stability of evaporating/condensing liquid films

J. P. Burelbach; S. G. Bankoff; Stephen H. Davis

We consider horizontal static liquid layers on planar solid boundaries and analyse their instabilities. The layers are either evaporating, when the plates are heated, or condensing, when the plates are cooled. Vapour recoil, thermocapillary, and rupture instabilities are discussed, along with the effects of mass loss (or gain) and non-equilibrium thermodynamic effects. Particular attention is paid to the development of dryout. We derive long-wave evolution equations for the interface shapes that govern the two-dimensional nonlinear stability of the layers subject to the above coupled mechanisms. These equations are analysed and their predictions discussed. Previous theoretical and experimental results are reviewed and compared with the present results. Finally, we discuss limitations of the modelling and extend our derivation to the case of three-dimensional disturbances.


Journal of Fluid Mechanics | 1983

Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities

Marc K. Smith; Stephen H. Davis

A planar liquid layer is bounded below by a rigid plate and above by an interface with a passive gas. A steady shear flow is set up by imposing a temperature gradient along the layer and driving the motion by thermocapillarity. This dynamic state is susceptible to two types of thermal-convective instabilities: (i) stationary longitudinal rolls, which involve the classical Marangoni instability studied by Pearson; and (ii) unsteady hydrothermal waves, which involve a new mechanism of instability deriving its energy from the horizontal temperature gradients. Thermal stability characteristics for liquid layers with and without return-flow profiles are presented as functions of the Prandtl number of the liquid and the Biot number of the interface. Comparisons are made with available experimental observations.


Journal of Colloid and Interface Science | 1982

Nonlinear theory of film rupture

Malcolm B Williams; Stephen H. Davis

Abstract The present work aims at examining nonlinear effects on film rupture by investigating the stability of thin films to finite amplitude disturbances. The dynamics of the liquid film is formulated using the Navier-Stokes equations augmented by a body force describing the London/van der Waals attractions. The liquid film is assumed to be charge neutralized, nondraining, and laterally unbounded. A nonlinear evolution equation is derived for h ( x , t ), the film thickness. This strongly nonlinear partial differential equation is solved by numerical methods as part of an initial-value problem for periodic boundary conditions in x , the lateral space dimension. Given this model, one obtains true rupture in the sense that the film thickness becomes zero in a finite time. The results reveal rupture characteristics and effects of nonlinearities on the rupture properties.


Journal of Fluid Mechanics | 1991

Non-isothermal spreading of liquid drops on horizontal plates

Peter Ehrhard; Stephen H. Davis

A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process by creating flows that counteract (reinforce) those associated with isothermal spreading. For zero advancing contact angle, heating will prevent the drop from spreading to infinity. Thus, the heat transfer serves as a sensitive control on the spreading.


Journal of Fluid Mechanics | 1982

Steady thermocapillary flows in two-dimensional slots

Asok K. Sen; Stephen H. Davis

Liquid in a slot flows owing to a temperature gradient applied along its free surface. The thermal variation of surface tension induces a steady viscous flow directed on the surface from hot to cold, and recirculating below. For small aspect ratios A, giving flow in thin, two-dimensional slots, an asymptotic theory valid for A yields to 0 is used to obtain the fluid and thermal fields as well as the interfacial shapes. Solutions are obtained for both fixed lines and fixed angles at the contact between the interface and the solid side walls.


Physics of Fluids | 1995

The spreading of volatile liquid droplets on heated surfaces

Daniel Anderson; Stephen H. Davis

A two‐dimensional volatile liquid droplet on a uniformly heated horizontal surface is considered. Lubrication theory is used to describe the effects of capillarity, thermocapillarity, vapor recoil, viscous spreading, contact‐angle hysteresis, and mass loss on the behavior of the droplet. A new contact‐line condition based on mass balance is formulated and used, which represents a leading‐order superposition of spreading and evaporative effects. Evolution equations for steady and unsteady droplet profiles are found and solved for small and large capillary numbers. In the steady evaporation case, the steady contact angle, which represents a balance between viscous spreading effects and evaporative effects, is larger than the advancing contact angle. This new angle is also observed over much of the droplet lifetime during unsteady evaporation. Further, in the unsteady case, effects which tend to decrease (increase) the contact angle promote (delay) evaporation. In the ‘‘large’’ capillary number limit, matche...


Journal of Fluid Mechanics | 1991

Long-wave instabilities of heated falling films : two-dimensional theory of uniform layers

S. W. Joo; Stephen H. Davis; S. G. Bankoff

A layer of volatile viscous liquid drains down a uniformly heated inclined plate. Long-wave instabilities of the uniform film are studied by deriving an evolution equation for two-dimensional disturbances. This equation incorporates viscosity, gravity, surface tension, thermocapillarity , and evaporation effects. The linear theory derived from this describes the competition among the instabilities. Numerical solution of the evolution equation describes the finite-amplitude behaviour that determines the propensity for dryout of the film. Among the phenomena that appear are the tendency to wave breaking, the creation of secondary structures, and the preemption of dryout by mean flow.


Journal of Fluid Mechanics | 1980

Moving contact lines and rivulet instabilities. Part 1. The static rivulet

Stephen H. Davis

A rivulet is a narrow stream of liquid located on a solid surface and sharing a curved interface with the surrounding gas. Capillary instabilities are investigated by a linearized stability theory. The formulation is for small, static rivulets whose contact (common or three-phase) lines (i) are fixed, (ii) move but have fixed contact angles or (iii) move but have contact angles smooth functions of contact-line speeds. The linearized stability equations are converted to a disturbance kinetic-energy balance showing that the disturbance response exactly satisfies a damped linear harmonic-oscillator equation. The ‘damping coefficient’ contains the bulk viscous dissipation, the effect of slip along the solid and all dynamic effects that arise in contact-line condition (iii). The ‘spring constant’, whose sign determines stability or instability in the system, incorporates the interfacial area changes and is identical in cases (ii) and (iii). Thus, for small disturbances changes in contact angle with contact-line speed constitute a purely dissipative process. All the above results are independent of slip model at the liquid–solid interface as long as a certain integral inequality holds. Finally, sufficient conditions for stability are obtained in all cases (i), (ii) and (iii).


Journal of Fluid Mechanics | 1983

Instabilities of dynamic thermocapillary liquid layers. Part 2. Surface-wave instabilities

Marc K. Smith; Stephen H. Davis

A planar liquid layer is bounded below by a rigid plate and above by an interface with a passive gas. A steady shear flow is set up by imposing a temperature gradient along the layer and driving the motion by thermocapillarity. This dynamic state is susceptible to surface-wave instabilities that couple the interfacial deflection to the underlying shear flow. These instabilities are found to be directly related to the two-dimensional waves on an isothermal layer subject to wind shear as described by Miles and by Smith & Davis. Hence the surface-tension gradients are important only in that they drive the basic shear flow. The surface-wave stability characteristics for liquid layers with and without return-flow profiles are presented, and special attention is paid to long-wave instabilities. Comparisons are made with available experimental observations.

Collaboration


Dive into the Stephen H. Davis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harris Wong

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

S. Rosenblat

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge