Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen H. Donaldson is active.

Publication


Featured researches published by Stephen H. Donaldson.


Langmuir | 2015

Developing a general interaction potential for hydrophobic and hydrophilic interactions.

Stephen H. Donaldson; Anja Røyne; Kai Kristiansen; Michael V. Rapp; Saurabh Das; Matthew A. Gebbie; Dong Woog Lee; Philipp Stock; Markus Valtiner; Jacob N. Israelachvili

We review direct force measurements on a broad class of hydrophobic and hydrophilic surfaces. These measurements have enabled the development of a general interaction potential per unit area, W(D) = -2γ(i)Hy exp(-D/D(H)) in terms of a nondimensional Hydra parameter, Hy, that applies to both hydrophobic and hydrophilic interactions between extended surfaces. This potential allows one to quantitatively account for additional attractions and repulsions not included in the well-known combination of electrostatic double layer and van der Waals theories, the so-called Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The interaction energy is exponentially decaying with decay length D(H) ≈ 0.3-2 nm for both hydrophobic and hydrophilic interactions, with the exact value of D(H) depending on the precise system and conditions. The pre-exponential factor depends on the interfacial tension, γ(i), of the interacting surfaces and Hy. For Hy > 0, the interaction potential describes interactions between partially hydrophobic surfaces, with the maximum hydrophobic interaction (i.e., two fully hydrophobic surfaces) corresponding to Hy = 1. Hydrophobic interactions between hydrophobic monolayer surfaces measured with the surface forces apparatus (SFA) are shown to be well described by the proposed interaction potential. The potential becomes repulsive for Hy < 0, corresponding to partially hydrophilic (hydrated) interfaces. Hydrated surfaces such as mica, silica, and lipid bilayers are discussed and reviewed in the context of the values of Hy appropriate for each system.


Proceedings of the National Academy of Sciences of the United States of America | 2011

General hydrophobic interaction potential for surfactant/lipid bilayers from direct force measurements between light-modulated bilayers

Stephen H. Donaldson; C. Ted Lee; Bradley F. Chmelka; Jacob N. Israelachvili

We establish and quantify correlations among the molecular structures, interaction forces, and physical processes associated with light-responsive self-assembled surfactant monolayers or bilayers at interfaces. Using the surface forces apparatus (SFA), the interaction forces between adsorbed monolayers and bilayers of an azobenzene-functionalized surfactant can be drastically and controllably altered by light-induced conversion of trans and cis molecular conformations. These reversible conformation changes affect significantly the shape of the molecules, especially in the hydrophobic region, which induces dramatic transformations of molecular packing in self-assembled structures, causing corresponding modulation of electrostatic double layer, steric hydration, and hydrophobic interactions. For bilayers, the isomerization from trans to cis exposes more hydrophobic groups, making the cis bilayers more hydrophobic, which lowers the activation energy barrier for (hemi)fusion. A quantitative and general model is derived for the interaction potential of charged bilayers that includes the electrostatic double-layer force of the Derjaguin–Landau–Verwey–Overbeek theory, attractive hydrophobic interactions, and repulsive steric-hydration forces. The model quantitatively accounts for the elastic strains, deformations, long-range forces, energy maxima, adhesion minima, as well as the instability (when it exists) as two bilayers breakthrough and (hemi)fuse. These results have several important implications, including quantitative and qualitative understanding of the hydrophobic interaction, which is furthermore shown to be a nonadditive interaction.


ACS Nano | 2013

Asymmetric Electrostatic and Hydrophobic–Hydrophilic Interaction Forces between Mica Surfaces and Silicone Polymer Thin Films

Stephen H. Donaldson; Saurabh Das; Matthew A. Gebbie; M. Rapp; Louis C. Jones; Yuri Roiter; Peter H. Koenig; Yonas Gizaw; Jacob N. Israelachvili

We have synthesized model hydrophobic silicone thin films on gold surfaces by a two-step covalent grafting procedure. An amino-functionalized gold surface reacts with monoepoxy-terminated polydimethylsiloxane (PDMS) via a click reaction, resulting in a covalently attached nanoscale thin film of PDMS, and the click chemistry synthesis route provides great selectivity, reproducibility, and stability in the resulting model hydrophobic silicone thin films. The asymmetric interaction forces between the PDMS thin films and mica surfaces were measured with the surface forces apparatus in aqueous sodium chloride solutions. At an acidic pH of 3, attractive interactions are measured, resulting in instabilities during both approach (jump-in) and separation (jump-out from adhesive contact). Quantitative analysis of the results indicates that the Derjaguin-Landau-Verwey-Overbeek theory alone, i.e., the combination of electrostatic repulsion and van der Waals attraction, cannot fully describe the measured forces and that the additional measured adhesion is likely due to hydrophobic interactions. The surface interactions are highly pH-dependent, and a basic pH of 10 results in fully repulsive interactions at all distances, due to repulsive electrostatic and steric-hydration interactions, indicating that the PDMS is negatively charged at high pH. We describe an interaction potential with a parameter, known as the Hydra parameter, that can account for the extra attraction (low pH) due to hydrophobicity as well as the extra repulsion (high pH) due to hydrophilic (steric-hydration) interactions. The interaction potential is general and provides a quantitative measure of interfacial hydrophobicity/hydrophilicity for any set of interacting surfaces in aqueous solution.


Langmuir | 2010

Direct Measurement of Double-Layer, van der Waals, and Polymer Depletion Attraction Forces between Supported Cationic Bilayers

Travers H. Anderson; Stephen H. Donaldson; Hongbo Zeng; Jacob N. Israelachvili

The interactions of supported cationic surfactant bilayers and the effects of nonadsorbing cationic polyelectrolytes on these interactions were studied using the surface forces apparatus (SFA) technique. Bilayers of the cationic surfactant di(tallow ethyl ester) dimethyl ammonium chloride (DEEDMAC) were deposited on mica surfaces using the Langmuir-Blodgett technique, and the interactions between the bilayers were measured in various salt, nonionic polymer (PEG), and cationic polyelectrolyte solutions at different polymer molecular weights and concentrations. The forces between the bilayers in CaCl(2) solution are purely repulsive and follow the DLVO theory quantitatively down to bilayer separations of ∼2 nm. Addition of nonadsorbing polymer or polyelectrolyte has a number of effects on the interactions including the induction of a depletion-attraction between the bilayers and screening of the double-layer repulsion due to the added ions in the solution from the polyelectrolyte. The experimental results are shown to agree well with standard theories of depletion attraction and double-layer screening associated with dissolved polyelectrolyte. We also observed significant time and rate effects on measuring the equilibrium bilayer-bilayer interactions possibly due to the unexpectedly long times (>1 min) associated with the charge regulation of the bilayer surfaces. Implications for the interactions and stability of vesicle dispersions, i.e., of free rather than supported bilayers, in polymer solutions are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Correlating steric hydration forces with water dynamics through surface force and diffusion NMR measurements in a lipid–DMSO–H2O system

Alex M. Schrader; Stephen H. Donaldson; Jinsuk Song; Chi-Yuan Cheng; Dong Woog Lee; Songi Han; Jacob N. Israelachvili

Significance We use the common biological additive DMSO to show quantitatively the impact that surface-bound water has on interactions between lipid bilayers, the membranes that separate the interior of cells from the surroundings. We present a number of metrics to gauge the hydration of the bilayer surfaces and show how the metrics are affected by the concentration of DMSO in the solvent. This work further connects measurements of surface forces, surface structure and dynamics, and surface water diffusion with significant and broad implications for soft matter systems. Dimethyl sulfoxide (DMSO) is a common solvent and biological additive possessing well-known utility in cellular cryoprotection and lipid membrane permeabilization, but the governing mechanisms at membrane interfaces remain poorly understood. Many studies have focused on DMSO–lipid interactions and the subsequent effects on membrane-phase behavior, but explanations often rely on qualitative notions of DMSO-induced dehydration of lipid head groups. In this work, surface forces measurements between gel-phase dipalmitoylphosphatidylcholine membranes in DMSO–water mixtures quantify the hydration- and solvation-length scales with angstrom resolution as a function of DMSO concentration from 0 mol% to 20 mol%. DMSO causes a drastic decrease in the range of the steric hydration repulsion, leading to an increase in adhesion at a much-reduced intermembrane distance. Pulsed field gradient NMR of the phosphatidylcholine (PC) head group analogs, dimethyl phosphate and tetramethylammonium ions, shows that the ion hydrodynamic radius decreases with increasing DMSO concentration up to 10 mol% DMSO. The complementary measurements indicate that, at concentrations below 10 mol%, the primary effect of DMSO is to decrease the solvated volume of the PC head group and that, from 10 mol% to 20 mol%, DMSO acts to gradually collapse head groups down onto the surface and suppress their thermal motion. This work shows a connection between surface forces, head group conformation and dynamics, and surface water diffusion, with important implications for soft matter and colloidal systems.


Soft Matter | 2013

Interactions and visualization of bio-mimetic membrane detachment at smooth and nano-rough gold electrode surfaces

Stephen H. Donaldson; Markus Valtiner; Matthew A. Gebbie; Jaye K. Harada; Jacob N. Israelachvili

Non-specific physical and specific chemical interactions of cells, bacteria, and biomembranes with non-biological target surfaces (e.g., metallic and metal oxides) are crucial in determining the interfacial behavior (interaction forces, adhesion, local deformations and structuring) of many bio- and nano-inspired materials. Knowledge of the governing interactions provides physicochemical understanding of biological systems, and enables engineering of new nano-systems for biomaterials or biomedical benefit. We have directly measured and visualized membrane adhesion and detachment at nanoscopic and extended rough gold electrode surfaces through a multi-scale approach: interactions and contact mechanics measured by surface forces apparatus (SFA) are in quantitative agreement with atomic force microscopy (AFM) measurements, both of which show that membranes can strongly adhere to rough gold surfaces and asperities via specific amine–gold binding and non-specific hydrophobic interactions. The results give insights into membrane interactions at smooth and rough metallic surfaces, and provide a basis for improved design of nanoparticle and extended surface biomaterials.


Nature Communications | 2015

Real-time intermembrane force measurements and imaging of lipid domain morphology during hemifusion

Dong Woog Lee; Kai Kristiansen; Stephen H. Donaldson; Nicholas Cadirov; Xavier Banquy; Jacob N. Israelachvili

Membrane fusion is the core process in membrane trafficking and is essential for cellular transport of proteins and other biomacromolecules. During protein-mediated membrane fusion, membrane proteins are often excluded from the membrane–membrane contact, indicating that local structural transformations in lipid domains play a major role. However, the rearrangements of lipid domains during fusion have not been thoroughly examined. Here using a newly developed Fluorescence Surface Forces Apparatus (FL-SFA), migration of liquid-disordered clusters and depletion of liquid-ordered domains at the membrane–membrane contact are imaged in real time during hemifusion of model lipid membranes, together with simultaneous force–distance and lipid membrane thickness measurements. The load and contact time-dependent hemifusion results show that the domain rearrangements decrease the energy barrier to fusion, illustrating the significance of dynamic domain transformations in membrane fusion processes. Importantly, the FL-SFA can unambiguously correlate interaction forces and in situ imaging in many dynamic interfacial systems.


Langmuir | 2015

Effects of Surfactants and Polyelectrolytes on the Interaction between a Negatively Charged Surface and a Hydrophobic Polymer Surface

Michael V. Rapp; Stephen H. Donaldson; Matthew A. Gebbie; Yonas Gizaw; Peter H. Koenig; Yuri Roiter; Jacob N. Israelachvili

We have measured and characterized how three classes of surface-active molecules self-assemble at, and modulate the interfacial forces between, a negatively charged mica surface and a hydrophobic end-grafted polydimethylsiloxane (PDMS) polymer surface in solution. We provide a broad overview of how chemical and structural properties of surfactant molecules result in different self-assembled structures at polymer and mineral surfaces, by studying three characteristic surfactants: (1) an anionic aliphatic surfactant, sodium dodecyl sulfate (SDS), (2) a cationic aliphatic surfactant, myristyltrimethylammonium bromide (MTAB), and (3) a silicone polyelectrolyte with a long-chain PDMS midblock and multiple cationic end groups. Through surface forces apparatus measurements, we show that the separate addition of three surfactants can result in interaction energies ranging from fully attractive to fully repulsive. Specifically, SDS adsorbs at the PDMS surface as a monolayer and modifies the monotonic electrostatic repulsion to a mica surface. MTAB adsorbs at both the PDMS (as a monolayer) and the mica surface (as a monolayer or bilayer), resulting in concentration-dependent interactions, including a long-range electrostatic repulsion, a short-range steric hydration repulsion, and a short-range hydrophobic attraction. The cationic polyelectrolyte adsorbs as a monolayer on the PDMS and causes a long-range electrostatic attraction to mica, which can be modulated to a monotonic repulsion upon further addition of SDS. Therefore, through judicious selection of surfactants, we show how to modify the magnitude and sign of the interaction energy at different separation distances between hydrophobic and hydrophilic surfaces, which govern the static and kinetic stability of colloidal dispersions. Additionally, we demonstrate how the charge density of silicone polyelectrolytes modifies both their self-assembly at polymer interfaces and the robust adhesion of thin PDMS films to target surfaces.


Small | 2015

Hydrophobic, Electrostatic, and Dynamic Polymer Forces at Silicone Surfaces Modified with Long-Chain Bolaform Surfactants

Michael V. Rapp; Stephen H. Donaldson; Matthew A. Gebbie; Saurabh Das; Yair Kaufman; Yonas Gizaw; Peter H. Koenig; Yuri Roiter; Jacob N. Israelachvili

Surfactant self-assembly on surfaces is an effective way to tailor the complex forces at and between hydrophobic-water interfaces. Here, the range of structures and forces that are possible at surfactant-adsorbed hydrophobic surfaces are demonstrated: certain long-chain bolaform surfactants-containing a polydimethylsiloxane (PDMS) mid-block domain and two cationic α, ω-quarternary ammonium end-groups-readily adsorb onto thin PDMS films and form dynamically fluctuating nanostructures. Through measurements with the surface forces apparatus (SFA), it is found that these soft protruding nanostructures display polymer-like exploration behavior at the PDMS surface and give rise to a long-ranged, temperature- and rate-dependent attractive bridging force (not due to viscous forces) on approach to a hydrophilic bare mica surface. Coulombic interactions between the cationic surfactant end-groups and negatively-charged mica result in a rate-dependent polymer bridging force during separation as the hydrophobic surfactant mid-blocks are pulled out from the PDMS interface, yielding strong adhesion energies. Thus, (i) the versatile array of surfactant structures that may form at hydrophobic surfaces is highlighted, (ii) the need to consider the interaction dynamics of such self-assembled polymer layers is emphasized, and (iii) it is shown that long-chain surfactants can promote robust adhesion in aqueous solutions.


Journal of the American Chemical Society | 2012

Hydrophobic Forces, Electrostatic Steering, and Acid–Base Bridging between Atomically Smooth Self-Assembled Monolayers and End-Functionalized PEGolated Lipid Bilayers

Markus Valtiner; Stephen H. Donaldson; Matthew A. Gebbie; Jacob N. Israelachvili

Collaboration


Dive into the Stephen H. Donaldson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong Woog Lee

University of California

View shared research outputs
Top Co-Authors

Avatar

Saurabh Das

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge