Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen H. Gavett is active.

Publication


Featured researches published by Stephen H. Gavett.


Journal of Toxicology and Environmental Health | 2011

Pulmonary Inflammatory and Fibrotic Responses in Fischer 344 Rats After Intratracheal Instillation Exposure to Libby Amphibole

Danielle J. Padilla-Carlin; Mette C. Schladweiler; Jonathan H. Shannahan; Abraham Nyska; Lyle D. Burgoon; Stephen H. Gavett

Increased incidences of asbestosis have been reported in workers from Libby, MT, associated with exposures to amphibole-contaminated vermiculite. In this study pulmonary and histopathological changes were investigated following Libby amphibole (LA) exposure in a rat model. Rat respirable fractions of LA and amosite (aerodynamic diameter <2.5 μm) were prepared by water elutriation. Male F344 rats were exposed to single doses of either saline (SAL), amosite (0.65 mg/rat), or LA (0.65 or 6.5 mg/rat) by intratracheal instillation. At times from 1 d to 3 mo after exposure, bronchoalveolar lavage (BAL) was performed and right and left lungs were removed for reverse-transcription polymerase chain reaction (RT-PCR) and histopathological analysis, respectively. Data indicated that 0.65 mg amosite resulted in a higher degree of pulmonary injury, inflammation, and fibrotic events than LA at the same mass dose. Exposure to either amosite or high dose LA resulted in higher levels of cellular permeability and injury, inflammatory enzymes, and iron binding proteins in both BAL fluid and lung tissue at most time points when compared to SAL controls. However, mRNA expression for some growth factors (e.g., platelet-derived growth factor [PDGF]-A and transforming growth factor [TGF]-1β), which contribute to fibrosis, were downregulated at several time points. Furthermore, histopathological examination showed notable thickening of interstitial areas surrounding the alveolar ducts and terminal bronchioles. On a mass dose basis, amosite produced a greater acute and persistent lung injury for at least 3 mo after exposure. However, further testing and analysis of LA are needed with regard to the dose metric to fully evaluate its potential fibrogenicity and carcinogenicity.


Journal of Toxicology and Environmental Health | 2012

Long-Term Response of Rats to Single Intratracheal Exposure of Libby Amphibole or Amosite

Jaime M. Cyphert; D. J. Padilla-Carlin; Mette C. Schladweiler; Jonathan H. Shannahan; Abraham Nyska; Stephen H. Gavett

In former mine workers and residents of Libby, Montana, exposure to amphibole-contaminated vermiculite has been associated with increased incidences of asbestosis and mesothelioma. In this study, long-term effects of Libby amphibole (LA) exposure were investigated relative to the well-characterized amosite asbestos in a rat model. Rat-respirable fractions of LA and amosite (aerodynamic diameter ≤2.5 μm) were prepared by water elutriation. Male F344 rats were exposed to a single dose of either saline, amosite (0.65 mg/rat), or LA (0.65 or 6.5 mg/rat) by intratracheal (IT) instillation. One year after exposure, asbestos-exposed rats displayed chronic pulmonary inflammation and fibrosis. Two years postexposure, lung inflammation and fibrosis progressed in a time- and dose-dependent manner in LA-exposed rats, although the severity of inflammation and fibrosis was smaller in magnitude than in animals exposed to amosite. In contrast, gene expression of the fibrosis markers Col 1A2 and Col 3A1 was significantly greater in LA-exposed compared to amosite-exposed rats. There was no apparent evidence of preneoplastic changes in any of the asbestos-exposed groups. However, all asbestos-exposed rats demonstrated a significant increase in the expression of epidermal growth factor receptor (EGFR) 2 yr after instillation. In addition, only LA-exposed rats showed significant elevation in mesothelin (Msln) and Wilms tumor gene (WT1) expression, suggesting possible induction of tumor pathways. These results demonstrate that a single IT exposure to LA is sufficient to induce significant fibrogenic, but not carcinogenic, effects up to 2 yr after exposure that differ both in quality and magnitude from those elicited by amosite administration at the same mass dose in F344 rats. Data showed that LA was on a mass basis less potent than amosite.


Journal of Toxicology and Environmental Health | 2014

Early and Delayed Effects of Naturally Occurring Asbestos on Serum Biomarkers of Inflammation and Metabolism

Debora L. Andrews; Mette C. Schladweiler; Stephen H. Gavett; Darol E. Dodd; Jaime M. Cyphert

Studies recently showed that intratracheal (IT) instillation of Libby amphibole (LA) increases circulating acute-phase proteins (APP; α-2 macroglobulin, A2M; and α-1 acid glycoprotein, AGP) and inflammatory biomarkers (osteopontin and lipocalin) in rats. In this study, objectives were to (1) compare changes in biomarkers of rats after instillation of different naturally occurring asbestos (NOA) minerals including LA, Sumas Mountain chrysotile (SM), El Dorado Hills tremolite (ED), and Ontario ferroactinolite cleavage fragments (ON), and (2) examine biomarkers after subchronic LA or amosite inhalation exposure. Rat-respirable fractions (aerodynamic diameter approximately 2.5 μm) prepared by water elutriation were delivered via a single IT instillation at doses of 0, 0.5, and 1.5 mg/rat in male F344 rats. Nose-only inhalation exposures were performed at 0, 1, 3.3, and 10 mg/m3 for LA and at 3.3 mg /m3 for amosite, 6h/d, 5 d/wk for 13 wk. Inflammation, metabolic syndrome, and cancer biomarkers were analyzed in the serum for up to 18 mo. IT instillation of some asbestos materials significantly increased serum AGP and A2M but to a varying degree (SM = LA > ON = ED). Numerical increases in interleukin (IL)-6 and osteopontin occurred in rats instilled with SM. SM and ED also elevated leptin and insulin at 15 mo, suggesting potential metabolic effects. LA inhalation tended to raise A2M at d 1 but not cytokines. Serum mesothelin appeared to elevate after 18 mo of LA inhalation. These results suggest that the lung injury induced by high levels of asbestos materials may be associated with systemic inflammatory changes and predisposition to insulin resistance.


Toxicological Sciences | 2012

Sumas Mountain Chrysotile Induces Greater Lung Fibrosis in Fischer 344 Rats Than Libby Amphibole, El Dorado Tremolite, and Ontario Ferroactinolite

Jaime M. Cyphert; Abraham Nyska; Ron K. Mahoney; Mette C. Schladweiler; Stephen H. Gavett

The physical properties of different types of asbestos may strongly affect health outcomes in exposed individuals. This study was designed to provide understanding of the comparative toxicity of naturally occurring asbestos (NOA) fibers including Libby amphibole (LA), Sumas Mountain chrysotile (SM), El Dorado tremolite (ED), and Ontario ferroactinolite (ON) cleavage fragments. Rat-respirable fractions (PM₂.₅) were prepared by water elutriation. Surface area was greater for SM (64.1 m²/g) than all other samples (range: 14.1-16.2 m²/g), whereas mean lengths and aspect ratios (ARs) for LA and SM were comparable and greater than ED and ON. Samples were delivered via a single intratracheal (IT) instillation at doses of 0.5 and 1.5mg/rat. One day post-IT instillation, low-dose NOA exposure resulted in a 3- to 4-fold increase in bronchoalveolar lavage fluid (BALF) cellularity compared with dispersion media (DM) controls, whereas high-dose exposure had a more severe effect on lung inflammation which varied by source. Although inducing less neutrophilic inflammation than ON and ED, exposure to either LA or SM resulted in a greater degree of acute lung injury. Three months post-IT instillation, most BALF parameters had returned to control levels, whereas the development of fibrosis persisted and was greatest in SM-exposed rats (SM > LA > ON > ED). These data demonstrate that fiber length and higher AR are directly correlated with the severity of fibrosis and that, in the rat, exposure to SM is more fibrogenic than LA which suggests that there may be cause for concern for people at risk of being exposed to NOA from the Sumas Mountain landslide.


Journal of Toxicology and Environmental Health | 2012

Vascular and Thrombogenic Effects of Pulmonary Exposure to Libby Amphibole

Jonathan H. Shannahan; Mette C. Schladweiler; Ronald Thomas; William O. Ward; Andy Ghio; Stephen H. Gavett

Exposure to Libby amphibole (LA) asbestos is associated with increased incidences of human autoimmune disease and mortality related to cardiovascular diseases. However, the systemic and vascular impacts are less well examined because of the dominance of pulmonary disease. It was postulated that regardless of the type of exposure scenario, LA exposure might produce systemic and vascular inflammogenic and thrombotic alterations in healthy and cardiovascular compromised rat models. Samples from three independent studies were examined. In the first study, male Wistar Kyoto (WKY), spontaneously hypertensive (SH), and SH heart failure (SHHF) rats were intratracheally instilled once with 0 (vehicle), 0.25, or 1 mg/rat of LA. In the second study, F344 rats were instilled with vehicle or LA at 0.5, 1.5, or 5 mg/rat. In the third study, F344 rats were instilled with the same mass concentrations of LA delivered by biweekly multiple instillations over 3 mo to simulate an episodic subchronic exposure. Complete blood count, platelet aggregation, serum cytokines, and biomarkers of systemic and aortic effects were examined. LA reduced adenosine diphosphate (ADP)-induced platelet aggregation and decreased circulating platelets in WKY (1 mg/rat) and F344 (5 mg/rat) at the 3-mo time point but did not do so in SH or SHHF rats. A decline in circulating lymphocytes with age appeared to be exacerbated by LA exposure in F344 rats but the differences were not significant. Aorta mRNA expression for biomarkers of oxidative stress (HO-1, LOX-1), inflammation (MIP-2), and thrombosis (tPA, PAI-1, vWf) were increased at baseline in SH and SHHF relative to WKY. LA exposure upregulated several of these biomarkers and also those involved in aortic contractility of WKY rats at 3 mo, suggesting thrombogenic, vasocontractile, and oxidative stress-mediated impairments. The aorta changes in F344 rats were less remarkable than changes noted in WKY following LA exposure. In conclusion, exposure to LA decreased circulating platelets and platelet coagulability while increasing the expression of oxidative stress, thrombosis, and vasoconstriction biomarkers in the aorta of healthy rats. These changes were similar to those noted at baseline in SH and SHHF rats, suggesting that LA-induced pulmonary injury might increase the risk of developing cardiovascular disease in healthy individuals.


Inhalation Toxicology | 2006

Inhibition of Pan Neurotrophin Receptor p75 Attenuates Diesel Particulate-Induced Enhancement of Allergic Airway Responses in C57/B16J Mice

Aimen K. Farraj; Najwa Haykal-Coates; Allen D. Ledbetter; Paul A. Evansky; Stephen H. Gavett

Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.


Journal of Toxicology and Environmental Health | 2015

Comparative Long-Term Toxicity of Libby Amphibole and Amosite Asbestos in Rats After Single or Multiple Intratracheal Exposures

Jaime M. Cyphert; Danielle J. Carlin; Abraham Nyska; Mette C. Schladweiler; Allen D. Ledbetter; Jonathan H. Shannahan; Stephen H. Gavett

In former mine workers of Libby, MT, exposure to amphibole-containing vermiculite was linked to increased rates of asbestosis, lung cancer, and mesothelioma. Although many studies showed adverse effects following exposure to Libby amphibole (LA; a mixture of winchite, richterite, and tremolite), little is known regarding the relative toxicity of LA compared to regulated asbestos, or regarding the risks associated with acute high-dose exposures relative to repeated low-dose exposures. In this study, pulmonary function, inflammation, and pathology were assessed after single or multiple intratracheal (IT) exposures of LA or a well-characterized amosite (AM) control fiber with equivalent fiber characteristics. Male F344 rats were exposed to an equivalent total mass dose (0.15, 0.5, 1.5, or 5 mg/rat) of LA or AM administered either as a single IT instillation, or as multiple IT instillations given every other week over a 13-wk period, and necropsied up to 20 mo after the initial IT. When comparing the two fiber types, in both studies LA resulted in greater acute neutrophilic inflammation and cellular toxicity than equal doses of AM, but long-term histopathological changes were approximately equivalent between fibers, suggesting that LA is at least as toxic as AM. In addition, although no dose-response relationship was discerned, mesothelioma or lung carcinomas were found after exposure to low and high dose levels of LA or AM in both studies. Conversely, when comparing studies, an equal mass dose given over multiple exposures instead of a single bolus resulted in greater chronic pathological changes in lung at lower doses, despite the initially weaker acute inflammatory response. Overall, these results suggest that there is a possibility of greater long-term pathological changes with repeated lower LA dose exposures, which more accurately simulates chronic environmental exposures.


Inhalation Toxicology | 2010

Increased lung resistance after diesel particulate and ozone co-exposure not associated with enhanced lung inflammation in allergic mice

Aimen K. Farraj; Elizabeth Boykin; Allen D. Ledbetter; Debora L. Andrews; Stephen H. Gavett

Exposure to diesel exhaust particulate matter (DEP) exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (O3). Since levels of both pollutants in ambient air tend to be simultaneously elevated, we investigated the possible synergistic effect of these agents on the exacerbation of allergic airways disease in mice. Male BALB/c mice were sensitized ip with ovalbumin (Ova) or vehicle only, then exposed once per week for 4 wk via nose-only inhalation (4u2009h) to the PM2.5 fraction of DEP (2u2009mg/m3), O3 (0.5 ppm), DEP and O3, or filtered air, and then challenged with aerosolized ovalbumin. Ova sensitization in air-exposed mice enhanced pulmonary inflammatory cell infiltration, several indicators of injury in the lung (lactate dehydrogenase, albumin and total protein), and lung resistance (RL) and elastance (EL) in response to methacholine (MCh) aerosol challenge. DEP exposure did not enhance the Ova-induced increase in pulmonary cell infiltration, indicators of injury, or RL and EL. O3 exposure enhanced the Ova-induced increase in inflammatory cell infiltration and N-acetylglucosaminidase (NAG) in the lung, but had no effect on RL or EL. DEP co-exposure significantly attenuated the O3-induced increase in cell infiltration and indicators of injury; co-exposure had no effect on EL relative to air-exposed Ova-sensitized mice. However, only DEP-O3 co-exposure significantly increased the Ova-induced increase in RL. Thus, O3 and DEP co-exposure exacerbated airways hyperresponsiveness, a response that was not associated with parallel increases in pulmonary inflammation and one that may be mediated by a unique mechanism.


Inhalation Toxicology | 2011

The role of iron in Libby amphibole-induced acute lung injury and inflammation

Jonathan H. Shannahan; Andrew J. Ghio; Mette C. Schladweiler; John K. McGee; Judy H. Richards; Stephen H. Gavett

Complexation of host iron (Fe) on the surface of inhaled asbestos fibers has been postulated to cause oxidative stress contributing to in vivo pulmonary injury and inflammation. We examined the role of Fe in Libby amphibole (LA; mean length 4.99u2009µm ± 4.53 and width 0.28u2009µm ± 0.19) asbestos-induced inflammogenic effects in vitro and in vivo. LA contained acid-leachable Fe and silicon. In a cell-free media containing FeCl3, LA bound #17 µg of Fe/mg of fiber and increased reactive oxygen species generation #3.5 fold, which was reduced by deferoxamine (DEF) treatment. In BEAS-2B cells exposure to LA, LA loaded with Fe (FeLA), or LA with DEF did not increase HO-1 or ferritin mRNA expression. LA increased IL-8 expression, which was reduced by Fe loading but increased by DEF. To determine the role of Fe in LA-induced lung injury in vivo, spontaneously hypertensive rats were exposed intratracheally to either saline (300 µL), DEF (1u2009mg), FeCl3 (21 µg), LA (0.5u2009mg), FeLA (0.5u2009mg), or LA + DEF (0.5u2009mg). LA caused BALF neutrophils to increase 24u2009h post-exposure. Loading of Fe on LA but not chelation slightly decreased neutrophilic influx (LA + DEF > LA > FeLA). At 4u2009h post-exposure, LA-induced lung expression of MIP-2 was reduced in rats exposed to FeLA but increased by LA + DEF (LA + DEF > LA > FeLA). Ferritin mRNA was elevated in rats exposed to FeLA compared to LA. In conclusion, the acute inflammatory response to respirable fibers and particles may be inhibited in the presence of surface-complexed or cellular bioavailable Fe. Cell and tissue Fe-overload conditions may influence the pulmonary injury and inflammation caused by fibers.


Journal of Toxicology and Environmental Health | 2016

Long-term toxicity of naturally occurring asbestos in male Fischer 344 rats.

Jaime M. Cyphert; Marie A. McGee; Abraham Nyska; Mette C. Schladweiler; Stephen H. Gavett

ABSTRACT Naturally occurring asbestos (NOA) fibers are found in geologic deposits that may be disturbed by mining, earthworks, or natural processes, resulting in adverse health risks to exposed individuals. The toxicities of Libby amphibole and NOA samples including Sumas Mountain chrysotile (SM), El Dorado tremolite (ED), and Ontario ferroactinolite cleavage fragments (ON) were compared in male Fischer 344 (F344) rats 15 mo after exposure. Rat-respirable fractions of LA and SM displayed greater mean lengths and aspect ratios than ED and ON. After a single intratracheal (IT) instillation (0.5 or 1.5 mg/rat), persistent changes in ventilatory parameters and a significant increase in lung resistance at baseline and after methacholine aerosol dosing were found only in rats exposed to 1.5 mg SM. High-dose ED significantly elevated bronchoalveolar lavage lactate dehydrogenase (LDH) activity and protein levels, while high-dose SM increased γ-glutamyl transferase and LDH activities. A moderate degree of lung interstitial fibrosis after exposure to 1.5 mg SM persisted 15 mo after exposure, unchanged from previous findings at 3 mo. LA induced mild fibrosis, while ED and ON produced minimal and no apparent fibrosis, respectively. Bronchioloalveolar carcinoma was observed 15 mo after exposure to LA or ED. Data demonstrated that SM, given by bolus IT dosing on an equivalent mass basis, induced greater pulmonary function deficits, airway hyperresponsiveness, and interstitial fibrosis than other NOA, although unlike LA and ED, no apparent evidence for carcinogenicity was found. All NOA samples except ON cleavage fragments produced some degree of long-term toxicity.

Collaboration


Dive into the Stephen H. Gavett's collaboration.

Top Co-Authors

Avatar

Mette C. Schladweiler

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Aimen K. Farraj

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jaime M. Cyphert

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Jonathan H. Shannahan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allen D. Ledbetter

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Najwa Haykal-Coates

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Charly King

United States Environmental Protection Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge