Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen H. Gilbert is active.

Publication


Featured researches published by Stephen H. Gilbert.


IEEE Transactions on Medical Imaging | 2013

Application of Micro-Computed Tomography With Iodine Staining to Cardiac Imaging, Segmentation, and Computational Model Development

Oleg Aslanidi; Theodora Nikolaidou; Jichao Zhao; Bruce H. Smaill; Stephen H. Gilbert; Arun V. Holden; Tristan Lowe; Philip J. Withers; Robert S. Stephenson; Jonathan C. Jarvis; Jules C. Hancox; Mark R. Boyett; Henggui Zhang

Micro-computed tomography (micro-CT) has been widely used to generate high-resolution 3-D tissue images from small animals nondestructively, especially for mineralized skeletal tissues. However, its application to the analysis of soft cardiovascular tissues has been limited by poor inter-tissue contrast. Recent ex vivo studies have shown that contrast between muscular and connective tissue in micro-CT images can be enhanced by staining with iodine. In the present study, we apply this novel technique for imaging of cardiovascular structures in canine hearts. We optimize the method to obtain high-resolution X-ray micro-CT images of the canine atria and its distinctive regions-including the Bachmanns bundle, atrioventricular node, pulmonary arteries and veins-with clear inter-tissue contrast. The imaging results are used to reconstruct and segment the detailed 3-D geometry of the atria. Structure tensor analysis shows that the arrangement of atrial fibers can also be characterized using the enhanced micro-CT images, as iodine preferentially accumulates within the muscular fibers rather than in connective tissues. This novel technique can be particularly useful in nondestructive imaging of 3-D cardiac architectures from large animals and humans, due to the combination of relatively high speed ( ~ 1 h/per scan of the large canine heart) and high voxel resolution (36 μm) provided. In summary, contrast micro-CT facilitates fast and nondestructive imaging and segmenting of detailed 3-D cardiovascular geometries, as well as measuring fiber orientation, which are crucial in constructing biophysically detailed computational cardiac models.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Visualization and quantification of whole rat heart laminar structure using high-spatial resolution contrast-enhanced MRI

Stephen H. Gilbert; David Benoist; Alan P. Benson; Ed White; Steven F. Tanner; Arun V. Holden; Halina Dobrzynski; Olivier Bernus; Aleksandra Radjenovic

It has been shown by histology that cardiac myocytes are organized into laminae and this structure is important in function, both influencing the spread of electrical activation and enabling myocardial thickening in systole by laminar sliding. We have carried out high-spatial resolution three-dimensional MRI of the ventricular myolaminae of the entire volume of the isolated rat heart after contrast perfusion [dimeglumine gadopentate (Gd-DTPA)]. Four ex vivo rat hearts were perfused with Gd-DTPA and fixative and high-spatial resolution MRI was performed on a 9.4T MRI system. After MRI, cryosectioning followed by histology was performed. Images from MRI and histology were aligned, described, and quantitatively compared. In the three-dimensional MR images we directly show the presence of laminae and demonstrate that these are highly branching and are absent from much of the subepicardium. We visualized these MRI volumes to demonstrate laminar architecture and quantitatively demonstrated that the structural features observed are similar to those imaged in histology. We showed qualitatively and quantitatively that laminar architecture is similar in the four hearts. MRI can be used to image the laminar architecture of ex vivo hearts in three dimensions, and the images produced are qualitatively and quantitatively comparable with histology. We have demonstrated in the rat that: 1) laminar architecture is consistent between hearts; 2) myolaminae are absent from much of the subepicardium; and 3) although localized orthotropy is present throughout the myocardium, tracked myolaminae are branching structures and do not have a discrete identity.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension

David Benoist; Rachel Stones; Mark J. Drinkhill; Alan P. Benson; Zhaokang Yang; Cécile Cassan; Stephen H. Gilbert; David A. Saint; Olivier Cazorla; Derek S. Steele; Olivier Bernus; Ed White

Pulmonary hypertension provokes right heart failure and arrhythmias. Better understanding of the mechanisms underlying these arrhythmias is needed to facilitate new therapeutic approaches for the hypertensive, failing right ventricle (RV). The aim of our study was to identify the mechanisms generating arrhythmias in a model of RV failure induced by pulmonary hypertension. Rats were injected with monocrotaline to induce either RV hypertrophy or failure or with saline (control). ECGs were measured in conscious, unrestrained animals by telemetry. In isolated hearts, electrical activity was measured by optical mapping and myofiber orientation by diffusion tensor-MRI. Sarcoplasmic reticular Ca(2+) handling was studied in single myocytes. Compared with control animals, the T-wave of the ECG was prolonged and in three of seven heart failure animals, prominent T-wave alternans occurred. Discordant action potential (AP) alternans occurred in isolated failing hearts and Ca(2+) transient alternans in failing myocytes. In failing hearts, AP duration and dispersion were increased; conduction velocity and AP restitution were steeper. The latter was intrinsic to failing single myocytes. Failing hearts had greater fiber angle disarray; this correlated with AP duration. Failing myocytes had reduced sarco(endo)plasmic reticular Ca(2+)-ATPase activity, increased sarcoplasmic reticular Ca(2+)-release fraction, and increased Ca(2+) spark leak. In hypertrophied hearts and myocytes, dysfunctional adaptation had begun, but alternans did not develop. We conclude that increased electrical and structural heterogeneity and dysfunctional sarcoplasmic reticular Ca(2+) handling increased the probability of alternans, a proarrhythmic predictor of sudden cardiac death. These mechanisms are potential therapeutic targets for the correction of arrhythmias in hypertensive, failing RVs.


Heart Rhythm | 2010

Dual excitation wavelength epifluorescence imaging of transmural electrophysiological properties in intact hearts

Richard D. Walton; David Benoist; Christopher J. Hyatt; Stephen H. Gilbert; Ed White; Olivier Bernus

BACKGROUND Epifluorescence imaging using voltage-sensitive dyes has provided unique insights into cardiac electrical activity and arrhythmias. However, conventional dyes use blue-green excitation light, which has limited depth penetration. OBJECTIVE The aim of this study was to demonstrate that combining a short and a long excitation wavelength using near-infrared (NIR) dyes allows for epifluorescence imaging of transmural electrophysiological properties in intact hearts. METHODS Epifluorescence imaging was performed in rat hearts (N = 11) using DI-4-ANEPPS and the NIR dye DI-4-ANBDQBS. Activation and action potential duration (APD) patterns were investigated at 2 excitation wavelengths (530 and 660 nm) after epicardial stimulation at various cycle lengths (160 to 70 ms). RESULTS Optical action potential upstrokes acquired with 660-nm excitation of DI-4-ANBDQBS were significantly longer than upstrokes obtained with 530-nm excitation of DI-4-ANEPPS (P < .001). Comparison of activation maps showed counterclockwise rotation of isochrones consistent with a transmural rotation of myofibers. Pronounced APD modulation by the activation sequence was observed at both excitation wavelengths. Significantly prolonged APDs (P = .016) and steeper APD restitution curves were found with DI-4-ANBDQBS (660-nm excitation) when compared with DI-4-ANEPPS (530-nm excitation). Dual excitation wavelength experiments using solely DI-4-ANBDQBS yielded similar results. Monophasic action potential recordings showed prolonged APD and steeper APD restitution curves in the endocardium, indicating that 660-nm excitation provides a significant endocardial contribution to the signal. Three-dimensional computer simulations confirmed our findings. CONCLUSION Dual excitation wavelength epifluorescence allows detecting transmural heterogeneity in intact hearts. It therefore has the potential to become an important tool in experimental cardiac electrophysiology.


European Journal of Pharmaceutical Sciences | 2012

Virtual tissue engineering of the human atrium: modelling pharmacological actions on atrial arrhythmogenesis.

Oleg Aslanidi; Moza Al-Owais; Alan P. Benson; Michael A. Colman; Clifford J. Garratt; Stephen H. Gilbert; John P. Greenwood; Arun V. Holden; Sanjay Kharche; Elizabeth Kinnell; Eleftheria Pervolaraki; Sven Plein; Jonathan Stott; Henggui Zhang

Computational models of human atrial cells, tissues and atria have been developed. Cell models, for atrial wall, crista terminalis, appendage, Bachmanns bundle and pectinate myocytes are characterised by action potentials, ionic currents and action potential duration (APD) restitution. The principal effect of the ion channel remodelling of persistent atrial fibrillation (AF), and a mutation producing familial AF, was APD shortening at all rates. Electrical alternans was abolished by the modelled action of Dronedarone. AF induced gap junctional remodelling slows propagation velocity at all rates. Re-entrant spiral waves in 2-D models are characterised by their frequency, wavelength, meander and stability. For homogenous models of normal tissue, spiral waves self-terminate, due to meander to inexcitable boundaries, and by dissipation of excitation. AF electrical remodelling in these homogenous models led to persistence of spiral waves, and AF fibrotic remodelling to their breakdown into fibrillatory activity. An anatomical model of the atria was partially validated by the activation times of normal sinus rhythm. The use of tissue geometry from clinical MRI, and tissue anisotropy from ex vivo diffusion tensor magnetic resonance imaging is outlined. In the homogenous model of normal atria, a single scroll breaks down onto spatio-temporal irregularity (electrical fibrillation) that is self-terminating; while in the AF remodelled atria the fibrillatory activity is persistent. The persistence of electrical AF can be dissected in the model in terms of ion channel and intercellular coupling processes, that can be modified pharmacologically; the effects of anatomy, that can be modified by ablation; and the permanent effects of fibrosis, that need to be prevented.


Interface Focus | 2011

Construction and validation of anisotropic and orthotropic ventricular geometries for quantitative predictive cardiac electrophysiology

Alan P. Benson; Olivier Bernus; Hans Dierckx; Stephen H. Gilbert; John P. Greenwood; Arun V. Holden; Kevin Mohee; Sven Plein; Aleksandra Radjenovic; Michael E. Ries; Godfrey L. Smith; Steven Sourbron; Richard D. Walton

Reaction–diffusion computational models of cardiac electrophysiology require both dynamic excitation models that reconstruct the action potentials of myocytes as well as datasets of cardiac geometry and architecture that provide the electrical diffusion tensor D, which determines how excitation spreads through the tissue. We illustrate an experimental pipeline we have developed in our laboratories for constructing and validating such datasets. The tensor D changes with location in the myocardium, and is determined by tissue architecture. Diffusion tensor magnetic resonance imaging (DT-MRI) provides three eigenvectors ei and eigenvalues λi at each voxel throughout the tissue that can be used to reconstruct this architecture. The primary eigenvector e1 is a histologically validated measure of myocyte orientation (responsible for anisotropic propagation). The secondary and tertiary eigenvectors (e2 and e3) specify the directions of any orthotropic structure if λ2 is significantly greater than λ3—this orthotropy has been identified with sheets or cleavage planes. For simulations, the components of D are scaled in the fibre and cross-fibre directions for anisotropic simulations (or fibre, sheet and sheet normal directions for orthotropic tissues) so that simulated conduction velocities match values from optical imaging or plunge electrode experiments. The simulated pattern of propagation of action potentials in the models is partially validated by optical recordings of spatio-temporal activity on the surfaces of hearts. We also describe several techniques that enhance components of the pipeline, or that allow the pipeline to be applied to different areas of research: Q ball imaging provides evidence for multi-modal orientation distributions within a fraction of voxels, infarcts can be identified by changes in the anisotropic structure—irregularity in myocyte orientation and a decrease in fractional anisotropy, clinical imaging provides human ventricular geometry and can identify ischaemic and infarcted regions, and simulations in human geometries examine the roles of anisotropic and orthotropic architecture in the initiation of arrhythmias.


Journal of the American Heart Association | 2013

Functional, Anatomical, and Molecular Investigation of the Cardiac Conduction System and Arrhythmogenic Atrioventricular Ring Tissue in the Rat Heart

Andrew Atkinson; Sunil Logantha; Guoliang Hao; Joseph Yanni; Olga Fedorenko; Aditi Sinha; Stephen H. Gilbert; Alan P. Benson; David L. Buckley; Robert H. Anderson; Mark R. Boyett; Halina Dobrzynski

Background The cardiac conduction system consists of the sinus node, nodal extensions, atrioventricular (AV) node, penetrating bundle, bundle branches, and Purkinje fibers. Node‐like AV ring tissue also exists at the AV junctions, and the right and left rings unite at the retroaortic node. The study aims were to (1) construct a 3‐dimensional anatomical model of the AV rings and retroaortic node, (2) map electrical activation in the right ring and study its action potential characteristics, and (3) examine gene expression in the right ring and retroaortic node. Methods and Results Three‐dimensional reconstruction (based on magnetic resonance imaging, histology, and immunohistochemistry) showed the extent and organization of the specialized tissues (eg, how the AV rings form the right and left nodal extensions into the AV node). Multiextracellular electrode array and microelectrode mapping of isolated right ring preparations revealed robust spontaneous activity with characteristic diastolic depolarization. Using laser microdissection gene expression measured at the mRNA level (using quantitative PCR) and protein level (using immunohistochemistry and Western blotting) showed that the right ring and retroaortic node, like the sinus node and AV node but, unlike ventricular muscle, had statistically significant higher expression of key transcription factors (including Tbx3, Msx2, and Id2) and ion channels (including HCN4, Cav3.1, Cav3.2, Kv1.5, SK1, Kir3.1, and Kir3.4) and lower expression of other key ion channels (Nav1.5 and Kir2.1). Conclusions The AV rings and retroaortic node possess gene expression profiles similar to that of the AV node. Ion channel expression and electrophysiological recordings show the AV rings could act as ectopic pacemakers and a source of atrial tachycardia.


Veterinary Journal | 2010

The potential role of MRI in veterinary clinical cardiology.

Stephen H. Gilbert; Fraser McConnell; Arun V. Holden; Mohan U. Sivananthan; J. Dukes-McEwan

Over the last decade, magnetic resonance imaging (MRI) has become established as a useful referral diagnostic method in veterinary medicine that is widely used in small animal brain and spinal diseases, aural, nasal and orbital disorders, planning soft tissue surgery, oncology and small animal and equine orthopaedics. The use of MRI in these disciplines has grown due to its unparalleled capability to image soft tissue structures. This has been exploited in human cardiology where, despite the inherent difficulties in imaging a moving, contractile structure, cardiac MRI (CMRI) has become the optimal technique for the morphological assessment and quantification of ventricular function. Both CMRI hardware and software systems have developed rapidly in the last 10 years but although several preliminary veterinary CMRI studies have been reported, the techniques growth has been limited and is currently used primarily in clinical research. A review of published studies is presented with a description of CMRI technology and the potential of CMRI is discussed along with some of the reasons for its limited usage.


Journal of Cardiovascular Magnetic Resonance | 2015

Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts

Olivier Bernus; Aleksandra Radjenovic; Mark L. Trew; Ian J. LeGrice; Gregory B. Sands; Derek R. Magee; Bruce H. Smaill; Stephen H. Gilbert

BackgroundCardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays.MethodsEight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored.ResultsThe FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v1ST), intermediate (v2ST) and least (v3ST) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e1DTI), intermediate (e2DTI) and least (e3DTI) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v1ST) agreed well with that of diffusion (e1DTI) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v3ST) and diffusion (e3ST) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v3ST) and DTI (e3DTI) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v3ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v3DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored.ConclusionsWe show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations.


Journal of Pathology Informatics | 2015

Histopathology in 3D: From three-dimensional reconstruction to multi-stain and multi-modal analysis

Derek R. Magee; Yi Song; Stephen H. Gilbert; Nicholas Roberts; Nagitha Wijayathunga; Ruth K. Wilcox; Andrew J. Bulpitt; Darren Treanor

Light microscopy applied to the domain of histopathology has traditionally been a two-dimensional imaging modality. Several authors, including the authors of this work, have extended the use of digital microscopy to three dimensions by stacking digital images of serial sections using image-based registration. In this paper, we give an overview of our approach, and of extensions to the approach to register multi-modal data sets such as sets of interleaved histopathology sections with different stains, and sets of histopathology images to radiology volumes with very different appearance. Our approach involves transforming dissimilar images into a multi-channel representation derived from co-occurrence statistics between roughly aligned images.

Collaboration


Dive into the Stephen H. Gilbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henggui Zhang

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark R. Boyett

University of Manchester

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge