Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stephen H. Loring is active.

Publication


Featured researches published by Stephen H. Loring.


The New England Journal of Medicine | 2008

Mechanical Ventilation Guided by Esophageal Pressure in Acute Lung Injury

Daniel Talmor; Todd Sarge; Atul Malhotra; Ray Ritz; Alan Lisbon; Victor Novack; Stephen H. Loring

BACKGROUND Survival of patients with acute lung injury or the acute respiratory distress syndrome (ARDS) has been improved by ventilation with small tidal volumes and the use of positive end-expiratory pressure (PEEP); however, the optimal level of PEEP has been difficult to determine. In this pilot study, we estimated transpulmonary pressure with the use of esophageal balloon catheters. We reasoned that the use of pleural-pressure measurements, despite the technical limitations to the accuracy of such measurements, would enable us to find a PEEP value that could maintain oxygenation while preventing lung injury due to repeated alveolar collapse or overdistention. METHODS We randomly assigned patients with acute lung injury or ARDS to undergo mechanical ventilation with PEEP adjusted according to measurements of esophageal pressure (the esophageal-pressure-guided group) or according to the Acute Respiratory Distress Syndrome Network standard-of-care recommendations (the control group). The primary end point was improvement in oxygenation. The secondary end points included respiratory-system compliance and patient outcomes. RESULTS The study reached its stopping criterion and was terminated after 61 patients had been enrolled. The ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen at 72 hours was 88 mm Hg higher in the esophageal-pressure-guided group than in the control group (95% confidence interval, 78.1 to 98.3; P=0.002). This effect was persistent over the entire follow-up time (at 24, 48, and 72 hours; P=0.001 by repeated-measures analysis of variance). Respiratory-system compliance was also significantly better at 24, 48, and 72 hours in the esophageal-pressure-guided group (P=0.01 by repeated-measures analysis of variance). CONCLUSIONS As compared with the current standard of care, a ventilator strategy using esophageal pressures to estimate the transpulmonary pressure significantly improves oxygenation and compliance. Multicenter clinical trials are needed to determine whether this approach should be widely adopted. (ClinicalTrials.gov number, NCT00127491.)


Critical Care Medicine | 2006

Esophageal and transpulmonary pressures in acute respiratory failure

Daniel Talmor; Todd Sarge; Carl R. O'Donnell; Ray Ritz; Atul Malhotra; Alan Lisbon; Stephen H. Loring

Objective:Pressure inflating the lung during mechanical ventilation is the difference between pressure applied at the airway opening (Pao) and pleural pressure (Ppl). Depending on the chest walls contribution to respiratory mechanics, a given positive end-expiratory and/or end-inspiratory plateau pressure may be appropriate for one patient but inadequate or potentially injurious for another. Thus, failure to account for chest wall mechanics may affect results in clinical trials of mechanical ventilation strategies in acute respiratory distress syndrome. By measuring esophageal pressure (Pes), we sought to characterize influence of the chest wall on Ppl and transpulmonary pressure (PL) in patients with acute respiratory failure. Design:Prospective observational study. Setting:Medical and surgical intensive care units at Beth Israel Deaconess Medical Center. Patients:Seventy patients with acute respiratory failure. Interventions:Placement of esophageal balloon-catheters. Measurements and Main Results:Airway, esophageal, and gastric pressures recorded at end-exhalation and end-inflation Pes averaged 17.5 ± 5.7 cm H2O at end-expiration and 21.2 ± 7.7 cm H2O at end-inflation and were not significantly correlated with body mass index or chest wall elastance. Estimated PL was 1.5 ± 6.3 cm H2O at end-expiration, 21.4 ± 9.3 cm H2O at end-inflation, and 18.4 ± 10.2 cm H2O (n = 40) during an end-inspiratory hold (plateau). Although PL at end-expiration was significantly correlated with positive end-expiratory pressure (p < .0001), only 24% of the variance in PL was explained by Pao (R2 = .243), and 52% was due to variation in Pes. Conclusions:In patients in acute respiratory failure, elevated esophageal pressures suggest that chest wall mechanical properties often contribute substantially and unpredictably to total respiratory impedance, and therefore Pao may not adequately predict PL or lung distention. Systematic use of esophageal manometry has the potential to improve ventilator management in acute respiratory failure by providing more direct assessment of lung distending pressure.


American Journal of Respiratory and Critical Care Medicine | 2014

The application of esophageal pressure measurement in patients with respiratory failure.

E Akoumianaki; Salvatore Maurizio Maggiore; Franco Valenza; Giacomo Bellani; Amal Jubran; Stephen H. Loring; Paolo Pelosi; Daniel Talmor; Salvatore Grasso; Davide Chiumello; Claude Guérin; Nicolò Patroniti; Vm Ranieri; Luciano Gattinoni; Stefano Nava; Pier Paolo Terragni; Antonio Pesenti; Martin J. Tobin; Jordi Mancebo; Laurent Brochard

This report summarizes current physiological and technical knowledge on esophageal pressure (Pes) measurements in patients receiving mechanical ventilation. The respiratory changes in Pes are representative of changes in pleural pressure. The difference between airway pressure (Paw) and Pes is a valid estimate of transpulmonary pressure. Pes helps determine what fraction of Paw is applied to overcome lung and chest wall elastance. Pes is usually measured via a catheter with an air-filled thin-walled latex balloon inserted nasally or orally. To validate Pes measurement, a dynamic occlusion test measures the ratio of change in Pes to change in Paw during inspiratory efforts against a closed airway. A ratio close to unity indicates that the system provides a valid measurement. Provided transpulmonary pressure is the lung-distending pressure, and that chest wall elastance may vary among individuals, a physiologically based ventilator strategy should take the transpulmonary pressure into account. For monitoring purposes, clinicians rely mostly on Paw and flow waveforms. However, these measurements may mask profound patient-ventilator asynchrony and do not allow respiratory muscle effort assessment. Pes also permits the measurement of transmural vascular pressures during both passive and active breathing. Pes measurements have enhanced our understanding of the pathophysiology of acute lung injury, patient-ventilator interaction, and weaning failure. The use of Pes for positive end-expiratory pressure titration may help improve oxygenation and compliance. Pes measurements make it feasible to individualize the level of muscle effort during mechanical ventilation and weaning. The time is now right to apply the knowledge obtained with Pes to improve the management of critically ill and ventilator-dependent patients.


The New England Journal of Medicine | 2012

Evidence for Adult Lung Growth in Humans

James P. Butler; Stephen H. Loring; Samuel Patz; Akira Tsuda; Dmitriy A. Yablonskiy; Steven J. Mentzer

A 33-year-old woman underwent a right-sided pneumonectomy in 1995 for treatment of a lung adenocarcinoma. As expected, there was an abrupt decrease in her vital capacity, but unexpectedly, it increased during the subsequent 15 years. Serial computed tomographic (CT) scans showed progressive enlargement of the remaining left lung and an increase in tissue density. Magnetic resonance imaging (MRI) with the use of hyperpolarized helium-3 gas showed overall acinar-airway dimensions that were consistent with an increase in the alveolar number rather than the enlargement of existing alveoli, but the alveoli in the growing lung were shallower than in normal lungs. This study provides evidence that new lung growth can occur in an adult human.


Journal of Clinical Investigation | 1981

Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation.

Arthur S. Slutsky; Roger D. Kamm; Thomas H. Rossing; Stephen H. Loring; John L. Lehr; Ascher H. Shapiro; R. H. Ingram; Jeffrey M. Drazen

Recent studies have shown that effective pulmonary ventilation is possible with tidal volumes (VT) less than the anatomic dead-space if the oscillatory frequency (f) is sufficiently large. We systematically studied the effect on pulmonary CO2 elimination (VCO2) of varying f (2-30 Hz) and VT (1-7 ml/kg) as well as lung volume (VL) in 13 anesthetized, paralyzed dogs in order to examine the contribution of those variables that are thought to be important in determining gas exchange by high frequency ventilation. All experiments were performed when the alveolar PCO2 was 40 +/- 1.5 mm Hg. In all studies, VCO2 increased monotonically with f at constant VT. We quantitated the effects of f and VT on VCO2 by using the dimensionless equation VCO2/VOSC = a(VT/VTo)b(f/fo)c where: VOSC = f X VT, VTo = mean VT, fo = mean f and a, b, c, are constants obtained by multiple regression. The mean values of a, b, and c for all dogs were 2.12 X 10(-3), 0.49, and 0.08, respectively. The most important variable in determining VCO2 was VOSC; however, there was considerable variability among dogs in the independent effect of VT and f on VCO2, with a doubling of VT at a constant VOSC causing changes in VCO2 ranging from -13 to +110% (mean = +35%). Increasing VL from functional residual capacity (FRC) to the lung volume at an airway opening minus body surface pressure of 25 cm H2O had no significant effect on VCO2.


The New England Journal of Medicine | 1998

Relation between Preoperative Inspiratory Lung Resistance and the Outcome of Lung-Volume–Reduction Surgery for Emphysema

Edward P. Ingenito; Randall B. Evans; Stephen H. Loring; David W. Kaczka; Jennifer D. Rodenhouse; Simon C. Body; David J. Sugarbaker; Steven J. Mentzer; Malcolm M. DeCamp; John J. Reilly

BACKGROUND Surgery to reduce lung volume has recently been reintroduced to alleviate dyspnea and improve exercise tolerance in selected patients with emphysema. A reliable means of identifying patients who are likely to benefit from this surgery is needed. METHODS We measured lung resistance during inspiration, static recoil pressure at total lung capacity, static lung compliance, expiratory flow rates, and lung volumes in 29 patients with chronic obstructive lung disease before lung-volume-reduction surgery. The changes in the forced expiratory volume in one second (FEV1) six months after surgery were related to the preoperatively determined physiologic measures. A response to surgery was defined as an increase in the FEV1 of at least 0.2 liter and of at least 12 percent above base-line values. RESULTS Of the 29 patients, 23 had some improvement in FEV1 including 15 who met the criteria for a response to surgery. Among the variables considered, only preoperative lung resistance during inspiration predicted changes in expiratory flow rates after surgery. Inspiratory lung resistance correlated significantly and inversely with improvement in FEV1 after surgery (r=-0.63, P<0.001). A preoperative criterion of an inspiratory resistance of 10 cm of water per liter per second had a sensitivity of 88 percent (14 of 16 patients) and a specificity of 92 percent (12 of 13 patients) in identifying patients who were likely to have a response to surgery. CONCLUSIONS Preoperative lung resistance during inspiration appears to be a useful measure for selecting patients with emphysema for lung-volume-reduction surgery.


Radiology | 2009

Tracheal Collapsibility in Healthy Volunteers during Forced Expiration: Assessment with Multidetector CT

Phillip M. Boiselle; Carl R. O'Donnell; Alexander A. Bankier; Armin Ernst; Mary E. Millet; Alexis K. Potemkin; Stephen H. Loring

PURPOSE To assess forced expiratory tracheal collapsibility in healthy volunteers by using multidetector computed tomography and to compare the results with the current diagnostic criterion for tracheomalacia. MATERIALS AND METHODS An institutional review board approved this HIPAA-compliant study. After informed consent was obtained, 51 healthy volunteers (age range, 25-75 years) with normal spirometry results and no history of smoking or risk factors for tracheomalacia were prospectively studied. Volunteers were imaged with a 64-detector row scanner, with spirometric monitoring at total lung capacity and during forced exhalation, with 40 mAs, 120 kVp, and 0.625-mm detector collimation. Cross-sectional area and sagittal and coronal diameters of the trachea were measured 1 cm above the aortic arch and 1 cm above the carina. The percentage of expiratory collapse, the reduction in sagittal and coronal diameters, and the number of participants exceeding the current diagnostic criterion (>50% expiratory reduction in cross-sectional area) for tracheomalacia were calculated. RESULTS The final study population included 25 men and 26 women (mean age, 50 years). The mean percentage of expiratory reduction in tracheal lumen cross-sectional area was 54.34% +/- 18.6 (standard deviation) in the upper trachea and 56.14% +/- 19.3 in the lower trachea. Forty (78%) participants exceeded the current diagnostic criterion for tracheomalacia in the upper and/or lower trachea. Decreases in cross-sectional area of the upper and lower trachea correlated well with decreases in sagittal (r = 0.807 and 0.688, respectively) and coronal (r = 0.779 and 0.751, respectively) diameters (P < .001 for each correlation). CONCLUSION Healthy volunteers demonstrate a wide range of forced expiratory tracheal collapse, frequently exceeding the current diagnostic criterion for tracheomalacia.


Journal of Applied Physiology | 2010

Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress?

Stephen H. Loring; Carl R. O'Donnell; Negin Behazin; Atul Malhotra; Todd Sarge; Ray Ritz; Victor Novack; Daniel Talmor

Acute lung injury can be worsened by inappropriate mechanical ventilation, and numerous experimental studies suggest that ventilator-induced lung injury is increased by excessive lung inflation at end inspiration or inadequate lung inflation at end expiration. Lung inflation depends not only on airway pressures from the ventilator but, also, pleural pressure within the chest wall. Although esophageal pressure (Pes) measurements are often used to estimate pleural pressures in healthy subjects and patients, they are widely mistrusted and rarely used in critical illness. To assess the credibility of Pes as an estimate of pleural pressure in critically ill patients, we compared Pes measurements in 48 patients with acute lung injury with simultaneously measured gastric and bladder pressures (Pga and P(blad)). End-expiratory Pes, Pga, and P(blad) were high and varied widely among patients, averaging 18.6 +/- 4.7, 18.4 +/- 5.6, and 19.3 +/- 7.8 cmH(2)O, respectively (mean +/- SD). End-expiratory Pes was correlated with Pga (P = 0.0004) and P(blad) (P = 0.0104) and unrelated to chest wall compliance. Pes-Pga differences were consistent with expected gravitational pressure gradients and transdiaphragmatic pressures. Transpulmonary pressure (airway pressure - Pes) was -2.8 +/- 4.9 cmH(2)O at end exhalation and 8.3 +/- 6.2 cmH(2)O at end inflation, values consistent with effects of mediastinal weight, gravitational gradients in pleural pressure, and airway closure at end exhalation. Lung parenchymal stress measured directly as end-inspiratory transpulmonary pressure was much less than stress inferred from the plateau airway pressures and lung and chest wall compliances. We suggest that Pes can be used to estimate transpulmonary pressures that are consistent with known physiology and can provide meaningful information, otherwise unavailable, in critically ill patients.


Journal of Applied Physiology | 2009

Pulmonary characteristics in COPD and mechanisms of increased work of breathing.

Stephen H. Loring; Mauricio Garcia-Jacques; Atul Malhotra

Mechanical characteristics and gas exchange inefficiencies of the lungs contribute to increased work of ventilation in chronic obstructive pulmonary disease (COPD) at rest and exercise, and the energy cost of ventilation is increased in COPD at any external work level. Assuming typical ventilatory variables and respiratory characteristics, we estimated the relative contributions of inspiratory and expiratory resistance, dynamic elastance, intrinsic positive end-expiratory pressure, and gas exchange inefficiency to the work of breathing, finding that the last of these is likely to be of major importance. Dynamic hyperinflation can be seen as both an impediment to inspiratory muscle function and an essential component of adaptation to severe obstruction. Extrinsic restriction, in which the chest wall fails to achieve and maintain abnormally high lung volumes in COPD, can limit ventilatory function and contribute to disability.


Intensive Care Medicine | 2016

Esophageal and transpulmonary pressure in the clinical setting: meaning, usefulness and perspectives

Tommaso Mauri; Takeshi Yoshida; Giacomo Bellani; Ewan C. Goligher; Guillaume Carteaux; Nuttapol Rittayamai; Francesco Mojoli; Davide Chiumello; Lise Piquilloud; Salvatore Grasso; Amal Jubran; Franco Laghi; Sheldon Magder; Antonio Pesenti; Stephen H. Loring; Luciano Gattinoni; Daniel Talmor; Lluis Blanch; Marcelo B. P. Amato; Lu Chen; Laurent Brochard; Jordi Mancebo

PurposeEsophageal pressure (Pes) is a minimally invasive advanced respiratory monitoring method with the potential to guide management of ventilation support and enhance specific diagnoses in acute respiratory failure patients. To date, the use of Pes in the clinical setting is limited, and it is often seen as a research tool only.MethodsThis is a review of the relevant technical, physiological and clinical details that support the clinical utility of Pes.ResultsAfter appropriately positioning of the esophageal balloon, Pes monitoring allows titration of controlled and assisted mechanical ventilation to achieve personalized protective settings and the desired level of patient effort from the acute phase through to weaning. Moreover, Pes monitoring permits accurate measurement of transmural vascular pressure and intrinsic positive end-expiratory pressure and facilitates detection of patient–ventilator asynchrony, thereby supporting specific diagnoses and interventions. Finally, some Pes-derived measures may also be obtained by monitoring electrical activity of the diaphragm.ConclusionsPes monitoring provides unique bedside measures for a better understanding of the pathophysiology of acute respiratory failure patients. Including Pes monitoring in the intensivist’s clinical armamentarium may enhance treatment to improve clinical outcomes.

Collaboration


Dive into the Stephen H. Loring's collaboration.

Researchain Logo
Decentralizing Knowledge