Stephen J. Green
University of Exeter
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Stephen J. Green.
Clinical Cancer Research | 2007
R. Wilkinson; Rajesh Odedra; Simon P. Heaton; Stephen R. Wedge; Nicholas Keen; Claire Crafter; John R. Foster; Madeleine C. Brady; Alison L. Bigley; Elaine Brown; Kate Byth; Nigel Charles Barrass; Kirsten E. Mundt; Kevin Michael Foote; Nicola Murdoch Heron; Frederic Henri Jung; Andrew Austen Mortlock; F. Thomas Boyle; Stephen J. Green
Purpose: In the current study, we examined the in vivo effects of AZD1152, a novel and specific inhibitor of Aurora kinase activity (with selectivity for Aurora B). Experimental Design: The pharmacodynamic effects and efficacy of AZD1152 were determined in a panel of human tumor xenograft models. AZD1152 was dosed via several parenteral (s.c. osmotic mini-pump, i.p., and i.v.) routes. Results: AZD1152 potently inhibited the growth of human colon, lung, and hematologic tumor xenografts (mean tumor growth inhibition range, 55% to ≥100%; P < 0.05) in immunodeficient mice. Detailed pharmacodynamic analysis in colorectal SW620 tumor-bearing athymic rats treated i.v. with AZD1152 revealed a temporal sequence of phenotypic events in tumors: transient suppression of histone H3 phosphorylation followed by accumulation of 4N DNA in cells (2.4-fold higher compared with controls) and then an increased proportion of polyploid cells (>4N DNA, 2.3-fold higher compared with controls). Histologic analysis showed aberrant cell division that was concurrent with an increase in apoptosis in AZD1152-treated tumors. Bone marrow analyses revealed transient myelosuppression with the drug that was fully reversible following cessation of AZD1152 treatment. Conclusions: These data suggest that selective targeting of Aurora B kinase may be a promising therapeutic approach for the treatment of a range of malignancies. In addition to the suppression of histone H3 phosphorylation, determination of tumor cell polyploidy and apoptosis may be useful biomarkers for this class of therapeutic agent. AZD1152 is currently in phase I trials.
Current Topics in Medicinal Chemistry | 2005
Andrew Austen Mortlock; Nicholas Keen; Frederic Henri Jung; Nicola Murdoch Heron; Kevin Michael Foote; R. Wilkinson; Stephen J. Green
Errors in the mitotic process are thought to be one of the principal sources of the genetic instability that hallmarks cancer. Unsurprisingly, many of the proteins that regulate mitosis are aberrantly expressed in tumour cells when compared to their normal counterparts. These may represent a good source of targets for the development of novel anti-cancer agents. The Aurora kinases represent one such family of mitotic regulators. In recent years there has been intense interest in both understanding the role of the Aurora kinases in cell cycle regulation and also in developing small molecule inhibitors as potential novel anti-cancer drugs. With several companies now starting to take Aurora kinase inhibitors into clinical development, the time is right to review the medicinal chemistry contribution to developing the field, in particular to review the increasingly broad range of small molecule inhibitors with activity against this kinase family.
Molecular Cancer Therapeutics | 2009
Kate Byth; Andrew Peter Thomas; Gareth Hughes; Cheryl Forder; Alexandra McGregor; Catherine Geh; Sandra E. Oakes; Clive Green; Michael J. Walker; Nicholas John Newcombe; Stephen J. Green; Jim Growcott; Andy J. Barker; R. Wilkinson
Deregulation of the cell cycle has long been recognized as an essential driver of tumorigenesis, and agents that selectively target key cell cycle components continue to hold promise as potential therapeutics. We have developed AZD5438, a 4-(1-isopropyl-2-methylimidazol-5-yl)-2-(4-methylsulphonylanilino) pyrimidine, as a potent inhibitor of cyclin-dependent kinase (cdk) 1, 2, and 9 (IC50, 16, 6, and 20 nmol/L, respectively). In vitro, AZD5438 showed significant antiproliferative activity in human tumor cell lines (IC50 range, 0.2–1.7 μmol/L), causing inhibition of the phosphorylation of cdk substrates pRb, nucleolin, protein phosphatase 1a, and RNA polymerase II COOH-terminal domain and blocking cell cycling at G2-M, S, and G1 phases. In vivo, when orally administered at either 50 mg/kg twice daily or 75 mg/kg once daily, AZD5438 inhibited human tumor xenograft growth (maximum percentage tumor growth inhibition, range, 38–153; P < 0.05). In vivo, AZD5438 reduced the proportion of actively cycling cells. Further pharmacodynamic analysis of AZD5438-treated SW620 xenografts showed that efficacious doses of AZD5438 (>40% tumor growth inhibition) maintained suppression of biomarkers, such as phospho-pRbSer249/Thr252, for up to 16 hours following a single oral dose. A comparison of different schedules indicated that chronic daily oral dosing provided optimal cover to ensure antitumor efficacy. These data indicate that broad cdk inhibition may provide an effective method to impair the dysregulated cell cycle that drives tumorigenesis and AZD5438 has the pharmacologic profile that provides an ideal probe to test this premise. [Mol Cancer Ther 2009;8(7):1856–66]
Journal of Medicinal Chemistry | 2015
Bernard Christophe Barlaam; Sabina Cosulich; Sébastien L. Degorce; Martina Fitzek; Stephen J. Green; Urs Hancox; Christine Lambert-van der Brempt; Jean-Jacques Marcel Lohmann; Mickaël Maudet; Rémy Morgentin; Marie-Jeanne Pasquet; Aurélien Péru; Patrick Ple; Twana Saleh; Michel Vautier; Michael J. Walker; Lara Ward; Nicolas Warin
Several studies have highlighted the dependency of PTEN deficient tumors to PI3Kβ activity and specific inhibition of PI3Kδ has been shown activity against human B-cell cancers. We describe the discovery and optimization of a series of 8-(1-anilino)ethyl)-2-morpholino-4-oxo-4H-chromene-6-carboxamides as PI3Kβ/δ inhibitors, which led to the discovery of the clinical candidate 13, also known as AZD8186. On the basis of the lower lipophilicity of the chromen-4-one core compared to the previously utilized pyrido[1,2-a]pyrimid-4-one core, this series of compounds displayed high metabolic stability and suitable physical properties for oral administration. Compound 13 showed profound pharmacodynamic modulation of p-Akt in PTEN-deficient PC3 prostate tumor bearing mice after oral administration and showed complete inhibition of tumor growth in the mouse PTEN-deficient PC3 prostate tumor xenograft model. 13 was selected as a clinical candidate for treatment of PTEN-deficient cancers and has recently entered phase I clinical trials.
Analytical Chemistry | 2014
Jules L. Hammond; Andrew J. Gross; Pedro Estrela; Jesús Iniesta; Stephen J. Green; C. Peter Winlove; Paul G. Winyard; Nigel Benjamin; Frank Marken
Thiols and disulfides are ubiquitous and important analytical targets. However, their redox properties, in particular on gold sensor electrodes, are complex and obscured by strong adsorption. Here, a gold-gold dual-plate microtrench dual-electrode sensor with feedback signal amplification is demonstrated to give well-defined (but kinetically limited) steady-state voltammetric current responses for the cysteine-cystine redox cycle in nondegassed aqueous buffer media at pH 7 down to micromolar concentration levels.
Chemical Communications | 2000
Sharon M. Strawbridge; Stephen J. Green; James H. R. Tucker
By virtue of its reaction with phenylboronic acid to form a boronate ester, dopamine can be detected electrochemically in aqueous solutions, at physiological pH, in the presence of excess ascorbic acid.
Talanta | 2015
Andrew J. Gross; Stephanie Holmes; Sarah E. C. Dale; Miranda J. Smallwood; Stephen J. Green; C. Peter Winlove; Nigel Benjamin; Paul G. Winyard; Frank Marken
A dual-electrode sensor is developed for rapid detection of nitrite/nitrate at micromolar levels in phosphate buffer media and in dilute horse serum without additional sample pre-treatment. A generator-collector configuration is employed so that on one electrode nitrate is reduced to nitrite and on the second electrode nitrite is oxidised back to nitrate. The resulting redox cycle gives rise to a specific and enhanced current signal which is exploited for sensitive and reliable measurement of nitrite/nitrate in the presence of oxygen. The electrode design is based on a dual-plate microtrench (approximately 15 µm inter-electrode gap) fabricated from gold-coated glass and with a nano-silver catalyst for the reduction of nitrate. Fine tuning of the phosphate buffer pH is crucial for maximising collector current signals whilst minimising unwanted gold surface oxidation. A limit of detection of 24 μM nitrate and a linear concentration range of 200-1400 μM is reported for the microtrench sensor in phosphate buffer and dilute horse serum. Relative standard deviations for repeat measurements were in the range 1.8-6.9% (n=3) indicating good repeatability in both aqueous and biological media. Preliminary method validation against the standard chemiluminescence method used in medical laboratories is reported for nitrate analysis in serum.
New Journal of Chemistry | 2012
Gilles Gasser; Cristina Mari; Michelle Burkart; Stephen J. Green; Joan Ribas; Helen Stoeckli-Evans; James H. R. Tucker
The synthesis and in-depth characterisation including X-ray crystallography of a new hydroxy derivative of bis(2-pyridylcarbonyl)amine Hbpca, namely N-(3-hydroxypicolinoyl)picolinamide (Hbpca-OH), as well as two ferrocenyl derivatives of Hbpca-OH, namely 2-(picolinoylcarbamoyl)pyridin-3-yl ferrocenoate (HL1) and bis(2-(picolinoylcarbamoyl)pyridin-3-yl) 1,1′-ferrocenoate (H2L2), is reported. HL1 and H2L2 were complexed with five different transition metal cations, namely Fe2+, Zn2+, Ni2+, Cu2+ and Cu+, to give ten complexes with varying stoichiometries, which were characterised by different analytical methods including 1H NMR, ESI-MS, IR spectroscopy and microanalysis. The metal complexation was also confirmed by electrochemical measurements for all complexes except Zn(L1)2 and FeL2, for which the changes in formal redox potentials of ferrocene ΔE°′ observed were not significant enough. Furthermore, two X-ray structures of CuII complexes, namely [Cu2I2L12] and [Cu2I2L2]n, were determined. Both structures contain an extremely rare CuII–I2–CuII bridge. Finally, a small antiferromagnetic coupling in [Cu2I2L2]n was observed.
Tetrahedron Letters | 2002
F. Robin-Le Guen; P. Le Poul; Bertrand Caro; Nadège Faux; N Le Poul; Stephen J. Green
Self dimerisation of methylenepyran carbene complexes affords bis-pyrans containing electron rich polyene linkage. The cyclic voltammograms of these new donors show one two-electron oxidation wave at low potential.
Oncotarget | 2017
Nicola Curtis; Lorna Hopcroft; Filippos Michopoulos; Nichola Whalley; Haihong Zhong; Clare Murray; Armelle Logie; Mitchell Revill; Kate Byth; Amanda Benjamin; Mike A. Firth; Stephen J. Green; Paul D. Smith; Susan E. Critchlow
Tumors frequently display a glycolytic phenotype with increased flux through glycolysis and concomitant synthesis of lactate. To maintain glycolytic flux and prevent intracellular acidification, tumors efflux lactate via lactate transporters (MCT1-4). Inhibitors of lactate transport have the potential to inhibit glycolysis and tumor growth. We developed a small molecule inhibitor of MCT1 (AZD3965) and assessed its activity across a panel of cell lines. We explored its antitumor activity as monotherapy and in combination with doxorubicin or rituximab. AZD3965 is a potent inhibitor of MCT1 with activity against MCT2 but selectivity over MCT3 and MCT4. In vitro, AZD3965 inhibited the growth of a range of cell lines especially haematological cells. Inhibition of MCT1 by AZD3965 inhibited lactate efflux and resulted in accumulation of glycolytic intermediates. In vivo, AZD3965 caused lactate accumulation in the Raji Burkitt’s lymphoma model and significant tumor growth inhibition. Moreover, AZD3965 can be combined with doxorubicin or rituximab, components of the R-CHOP standard-of-care in DLBCL and Burkitt’s lymphoma. Finally, combining lactate transport inhibition by AZD3965 with GLS1 inhibition in vitro, enhanced cell growth inhibition and cell death compared to monotherapy treatment. The ability to combine AZD3965 with novel, and standard-of-care inhibitors offers novel combination opportunities in haematological cancers.Tumors frequently display a glycolytic phenotype with increased flux through glycolysis and concomitant synthesis of lactate. To maintain glycolytic flux and prevent intracellular acidification, tumors efflux lactate via lactate transporters (MCT1-4). Inhibitors of lactate transport have the potential to inhibit glycolysis and tumor growth. We developed a small molecule inhibitor of MCT1 (AZD3965) and assessed its activity across a panel of cell lines. We explored its antitumor activity as monotherapy and in combination with doxorubicin or rituximab. AZD3965 is a potent inhibitor of MCT1 with activity against MCT2 but selectivity over MCT3 and MCT4. In vitro, AZD3965 inhibited the growth of a range of cell lines especially haematological cells. Inhibition of MCT1 by AZD3965 inhibited lactate efflux and resulted in accumulation of glycolytic intermediates. In vivo, AZD3965 caused lactate accumulation in the Raji Burkitts lymphoma model and significant tumor growth inhibition. Moreover, AZD3965 can be combined with doxorubicin or rituximab, components of the R-CHOP standard-of-care in DLBCL and Burkitts lymphoma. Finally, combining lactate transport inhibition by AZD3965 with GLS1 inhibition in vitro, enhanced cell growth inhibition and cell death compared to monotherapy treatment. The ability to combine AZD3965 with novel, and standard-of-care inhibitors offers novel combination opportunities in haematological cancers.